Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/118692
Заглавие документа: К гипотезе хартсфилда – рингеля: (1, 2)-полярные и (1, 2)-разложимые графы
Авторы: Калачёв, В. Н.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2014
Издатель: Минск : БГУ
Библиографическое описание источника: Вестник БГУ. Серия 1, Физика. Математика. Информатика. - 2014. - № 3. - С. 81-84
Аннотация: Определены графы, называемые антимагическими, дано введение в гипотезу Хартсфилда – Рингеля об антимагичности связных графов и доказано свойство антимагичности для (1, 2)-полярных и (1, 2)-разложимых графов. Основная идея – обобщение результата Барруса, полученного для расщепляемых и 1-разложимых графов. В статье описан алгоритм нумерации ребер (1, 2)-полярных и (1, 2)-разложимых графов, представлено доказательство антимагичности получаемой нумерации, а также рассмотрен частный случай, не вписывающийся в общую концепцию. = Antimagic graphs are defined, the introduction to the Hartsfield – Ringel hypothesis about the antimagicness of connected graphs is given, the property of antimagicness for (1, 2)-polar and (1, 2)-decomposable graphs is proven. The main idea is the generalization of the result obtained by Barrus for split and 1-decomposable graphs. In the article the algorithm of edges numeration for (1, 2)-polar and (1, 2)-decomposable graphs is described, the prove of the antimagicness of such numeration is given, and also a special case, which is an exception from the main result, is considered.
URI документа: http://elib.bsu.by/handle/123456789/118692
ISSN: 1561-834X
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2014, №3 (сентябрь)

Полный текст документа:
Файл Описание РазмерФормат 
Vestnik_1_3_2014-081-084.pdf425,99 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.