К ГИПОТЕЗЕ ХАРТСФИЛДА – РИНГЕЛЯ: (1, 2)-ПОЛЯРНЫЕ И (1, 2)-РАЗЛОЖИМЫЕ ГРАФЫ

Определены графы, называемые антимагическими, дано введение в гипотезу Хартсфилда – Рингеля об антимагичности связных графов и доказано свойство антимагичности для (1, 2)-полярных и (1, 2)-разложимых графов. Основная идея – обобщение результата Барруса, полученного для расщепляемых и 1-разложимых графов. В статье описан алгоритм нумерации ребер (1, 2)-полярных и (1, 2)-разложимых графов, представлено доказательство антимагичности получаемой нумерации, а также рассмотрен частный случай, не вписывающийся в общую концепцию.

Ключевые слова: антимагические графы; гипотеза Хартсфилда – Рингеля; декомпозиция графов; алгоритм нумерации ребер.

Antimagic graphs are defined, the introduction to the Hartsfield – Ringel hypothesis about the antimagicness of connected graphs is given, the property of antimagicness for (1, 2)-polar and (1, 2)-decomposable graphs is proven. The main idea is the generalization of the result obtained by Barrus for split and 1-decomposable graphs. In the article the algorithm of edges numeration for (1, 2)-polar and (1, 2)-decomposable graphs is described, the prove of the antimagicness of such numeration is given, and also a special case, which is an exception from the main result, is considered.

Key words: antimagic graphs; the Hartsfield – Ringel hypothesis; graph decomposition; edges numeration algorithm.

В 1990 г. американские математики Н. Хартсфилд и Г. Рингель (N. Hartsfield, G. Ringel) ввели понятие антимагической нумерации ребер графа [1]. Графы, для которых такая нумерация возможна, были названы антимагическими. Кроме того, в [1] было высказано предположение, что все связные графы порядка $n \ge 3$ являются антимагическими.

В общем случае эта гипотеза до сих пор не доказана и не опровергнута, хотя существует много работ, ей посвященных. Все имеющиеся на сегодня результаты получены путем сужения задачи на некоторые классы графов.

В частности, в 2008 г. М. Д. Баррус в работе [2] доказал, что расщепляемые графы и 1-разложимые графы антимагические.

Цель настоящей работы — обобщить этот результат, перенеся его на более широкие классы графов, а именно на (1, 2)-полярные и (1, 2)-разложимые графы. В статье описан алгоритм нумерации ребер таких графов, представлено доказательство антимагичности получаемой нумерации, а также рассмотрен частный случай, не вписывающийся в общую концепцию.

Предварительные сведения

Пусть G = (V, E) - (n, m)-граф, а $\varphi : E \to \{1, 2, ..., m\}$ — некоторая инъективная функция. Определим на V функцию f, положив для $\forall v \in V$ $f(v) = \sum_{e} \varphi(e)$, где e пробегает множество ребер, инцидентных v. Если такая f также оказывается инъективной, то функция φ называется антимагической нумерацией, а граф G, для которого существует такая φ , называется антимагическим. Очевидно, что не все нумерации антимагического графа являются антимагическими.

Граф G называется (1, 2)-полярным, если существует такое разбиение $V = A \coprod B$, что порожденный подграф G(A) является полным, а G(B) — дизъюнктным объединением клик порядка не более 2.

Граф G называется (1, 2)-разложимым, или разложимым на уровне (1, 2), если существует такое разбиение множества его вершин $V = A \coprod B \coprod C$, что G является дизьюнктным объединением полного графа G(A), дизъюнктного объединения клик порядка не более 2 G(B), некоторого произвольного графа G(C) и множества ребер $\{ac : a \in A, c \in C\}$.

 \dot{M} в том и в другом случае будем называть подграф G(A) верхней долей, а подграф G(B) – нижней долей графа G.

Далее доказывается наличие антимагической нумерации у (1, 2)-полярных и (1, 2)-разложимых графов.

Алгоритм нумерации ребер

Пусть G = (V, E) – связный (1, 2)-полярный или (1, 2)-разложимый граф. Пусть $V = A \coprod B \coprod C$, где G(A) – верхняя доля; G(B) – нижняя доля; G(C) – произвольный граф. Если G – (1, 2)-полярный, то $C = \emptyset$ и пункты доказательства, относящиеся к C, можно просто опускать.

Можно сказать, что в C нет висячих вершин, иначе можно считать их принадлежащими A.

Также отметим, что $|A| \ge 2$ (иначе ребро вида $ab, a \in A, b \in B$, можно взять в качестве клики G(A)).

Заметим для случая $\mathit{C} = \varnothing$, что если есть вершина $\mathit{b} \in \mathit{B}$ такая, что $\deg \mathit{b} = |\mathit{A}|$, а в клике есть вершина $a \in A$ с deg a = |A| - 1, то эта вершина вообще не смежна с вершинами не из A и, в частности, с вершиной b. В этом случае можно переместить b в клику и a переместить в B. При этом свойство (1, 2)-полярности графа сохранится и можно будет утверждать, что $\deg b \le |A| \le \deg a$ для любых несмежных $a \in A, b \in B$. Для случая $C = \emptyset$ такая оценка верна всегда.

Алгоритм нумерации ребер графа

Bxod: G = (V, E) – связный (1, 2)-полярный или (1, 2)-разложимый граф, $V = A \coprod B \coprod C$.

Выход: антимагическая нумерация ребер графа — множество пар вида $(e, \varphi(e))$, где $e \in E, \ \phi(e) \in \{1, 2, ..., m\}.$

Начало алгоритма

1. Пусть $A = \{a_1, ..., a_{|A|}\}, B = \{b_1, ..., b_{|B|}\}, C = \{c_1, ..., c_{|C|}\},$ где индексы – в порядке неубывания сте-

Пусть $B' \subseteq B$ – множество вершин, принадлежащих всем $K_2 \subset G(B)$.

2. Выберем все $b'_{1i} \in B'_1 = \{b'_1 \in B' : \deg b'_1 = 1\}$. Упорядочим инцидентные этим вершинам ребра лексикографически, присвоим таким ребрам первые номера по порядку.

3. Выберем все $b_1 \in B_1 = \{b_1 \in B \setminus B' : \deg b_1 = 1\}.$

При необходимости перенумеруем их индексы по неубыванию суммы индексов инцидентных им а. Упорядочим инцидентные выбранным вершинам ребра лексикографически, присвоим им следующие номера по порядку.

Заметим: все ребра при висячих вершинах пронумерованы.

- 4. Непронумерованные ребра вида $b_i'b_i'$ упорядочиваем лексикографически, присвоив им следую-
 - 5. Введем $g_B: B' \to \mathbb{N}$ так, что $g_B(b')$ метка на ребре, инцидентном $b' \in B'$.
 - 6. Переупорядочим индексы B по неубыванию степеней вершин с тремя дополнительными условиями:
- 6.1. deg $b_i = \deg b_i$, $b_i \in B'$, $b_i \in B \setminus B' \Rightarrow i < j$ (при равенстве степеней сначала нумеруются вершины
- $6.\overset{?}{2}$. deg $b_i = \deg b_j, \ b_i \in B', \ b_j \in B', \ g_B\left(b_i\right) \leq g_B\left(b_j\right) \Rightarrow i < j$ (при равенстве степеней вершин из B' индексы упорядочиваются по неубыванию g_B);
- 6.3. $\deg b_i = \deg b_j, \ b_i \in B \backslash B', \ b_j \in B \backslash B', \ b_i$ инцидентна $a_{k_i},...,a_{k_p} \in A, \ b_j$ инцидентна $a_{l_i},...,a_{l_q} \in A,$ $\sum_{t=1}^{p} k_t \le \sum_{t=1}^{q} l_t \Rightarrow i \le j$ (при равенстве степеней вершин из $B \setminus B'$ индексы упорядочиваются по неубыванию суммы индексов смежных этим вершинам вершин из A).

После переупорядочивания получили $B = \left\{b_1^*, ..., b_{|B|}^*\right\}$, где индексы упорядочены по неубыванию степеней с дополнительными условиями 6.1-6.3.

Отметим: все вершины степени 1 уже удовлетворяют такой нумерации. Значит, можно начинать с вершин степени не менее 2.

Дальнейшие действия идентичны алгоритму Барруса из [2] и для экономии места опускаются.

Конец алгоритма

Отметим, что в случае |A| = 2 общий алгоритм может строить нумерацию, не являющуюся антимагической. Решение этой проблемы рассматривается в разделе «Частный случай: |A| = 2».

Доказательство антимагичности получаемой нумерации

Докажем, что построенная нумерация – антимагическая.

- I. Для $\forall b_i, b_j \in B \setminus B'$ при $i \le j$ получаем $f(b_i) \le f(b_j)$, так как $\deg b_i \le \deg b_i$ и ребра, инцидентные b_i , получают номера раньше ребер, инцидентных b_i .
 - II. Для вершин из B' степени 1:
- $i < j \Rightarrow f(b'_i) < f(b'_i)$ в силу лексикографического порядка нумерации инцидентных ребер на шаге 2;

• $b_i' \in B', \ b_j \in B \backslash B' \Rightarrow f\left(b_i'\right) \leq f\left(b_j\right)$ в силу того, что шаг 2 выполняется раньше шага 3.

III. Для вершин из B' степени 2 и выше:

- $b'_i \in B'$, $b_i \in B \setminus B'$, $\deg b_i < \deg b'_i \Rightarrow f(b_i) < f(b'_i)$;
- $b_i' \in B', \ b_j \in B \setminus B', \ \deg b_i' \le \deg b_j \implies f(b_i') \le f(b_j);$
- $b'_i, b'_j \in B'$, $\deg b'_i \le \deg b'_j \implies f(b'_i) \le f(b'_j)$.

Все эти оценки легко получаются из условий 6.1 и 6.2 и лексикографического порядка нумерации ребер.

Таким образом, доказана инъективность функции f на B.

IV. Для $\forall b \in B$, $\forall c \in C$ справедлива оценка deg $b \le |A| < |A| + 1 \le \deg c$. Учитывая, что ребра, инцидентные b, получают номера раньше ребер, инцидентных c, имеем f(b) < f(c).

Таким образом, для $\forall b \in B, \forall c \in C$ верно $f(b) \leq f(c)$.

V. Рассмотрим $\forall a \in A, \forall b \in B$. Если ребра ba нет, то deg $b \le$ deg a в силу сделанного ранее замечания, а так как ребра, инцидентные b, получают номера раньше, чем ребра, инцидентные a, имеем f(b) < f(a).

Пусть ребро ba есть:

- если у b нет соседей, кроме a, то снова получаем $1 = \deg b < \deg a$ и f(b) < f(a);
- если у b есть сосед, кроме a, то:
- либо этот сосед есть $b' \in B' \subset B$, тогда в силу упомянутой раньше оценки $\deg b \leq |A|$, а из существования ребра ba получаем оценку $\deg a \geq |A| 1 + 1 = |A|$. Значит, $\deg b \leq \deg a$ и f(b) < f(a);
- либо (если у b нет соседей из B) этот сосед есть $a' \in A$, тогда справедлива оценка $\deg b \le |A| 1$, а $\deg a \ge |A|$, как уже было сказано. Значит, $\deg b < \deg a$ и f(b) < f(a).

Таким образом, в каждой из ситуаций получаем: для $\forall a \in A, \ \forall b \in B$ выполняется f(b) < f(a).

Инъективность f на C, инъективность f на A и справедливость оценки f(c) < f(a) для $\forall a \in A, \forall c \in C$ доказываются аналогично тому, как это сделано в работе М. Д. Барруса (М. D. Barrus, 2010) [2], и для экономии места опускаются.

Отметим, что в случае |A| = 2 функция может оказаться неинъективной на A. Эта проблема рассматривается в следующем разделе.

Частный случай: |A| = 2

Пусть |A| = 2.

Заметим, что в этом случае в G(A) содержится только одно ребро a_1a_2 , которое получает последний номер из возможных, т. е. m=|E|. Это значит, что после нумерации всех $b_i\,a_j$ и $c_i\,a_j$ мы уже не можем изменить соотношение $f(a_1)$ и $f(a_2)$, так как у нас просто нет для этого достаточного количества ребер в клике, в отличие от случая $|A| \ge 3$.

K сожалению, имеются случаи, когда после выполнения алгоритма $f(a_1) = f(a_2)$.

Для разрешения этой проблемы нам потребуются дополнительные соображения.

Прежде всего, заметим, что в силу оценок, полученных в предыдущем разделе, a_1 и a_2 – единственные вершины, в которых f может принимать одинаковые значения. Следовательно, если после применения алгоритма $f(a_1) \neq f(a_2)$, то f инъективна на V и построенная нумерация антимагическая. Если же $f(a_1) = f(a_2)$, рассмотрим несколько случаев.

Случай 1. В окрестностях a_1 и a_2 есть по висячей вершине (здесь и далее наличие и вид G(C) не имеют значения и для удобства опускаются).

Пусть без нарушения общности i < j, $i_1 < j_1$.

Поменяем местами индексы при b_i и b_j , а также метки i_1 и j_1 на соответствующих ребрах. Имеем: все оценки для f сохранены (заметим, что deg $b_i \le$ deg $b_j \le$ 2), $f(a_1) > f(a_2)$ в силу $i_1 < j_1$. Получили антимагическую нумерацию.

Случай 2 (в окрестностях a_1 и a_2 есть по цепи P_3), случай 3 (в окрестностях a_1 и a_2 есть по треугольнику) и случай 4 (a_1 и a_2 входят в цикл C_4) аналогичны и для экономии места опускаются.

Случай 5. В окрестности a_1 нет висячих вершин, но есть цепь P_3 , в окрестности a_2 есть висячая вершина, но нет цепей. Пусть в этом случае $k \ge 1$ — максимальный индекс вершины, принадлежащей какой-либо из цепей при a_1 , тогда минимальный индекс висячей вершины, инцидентной a_2 , равен k+1.

Поменяем местами индексы при b_k и b_{k+1} , а также метки k и k+1. Несложно показать, что все оценки для f сохраняются, а $f(a_2) > f(a_1)$ в силу того, что k < k+1. Получили антимагическую нумерацию.

Случай 6. В окрестности a_1 нет висячих вершин и цепей P_3 , но есть треугольник, в окрестности a_2 есть висячая вершина и цепь P_3 , но нет треугольников. Пусть в этом случае $k \ge 1$ − максимальный ин-

декс вершины, принадлежащей какой-либо из цепей при a_1 , k+l $(l \ge 1)$ — максимальный индекс висячей вершины при a_2 , а $t \ge 1$ — количество треугольников при a_1 (заметим, что $2t \le k+l$).

Поменяем местами метки 2k+l+t и 2k+l+t+1. Также несложно показать, что все оценки для f сохраняются, при этом $f(a_1) < f(a_2)$ в силу 2k+l+t<2k+l+t+1. Получили антимагическую нумерацию.

Случай 7. В окрестности a_1 нет висячих вершин и цепей P_3 , но есть треугольник, в окрестности a_2 есть висячая вершина, но нет ни цепей, ни треугольников. Пусть в этом случае $k \ge 1$ — максимальный индекс висячей вершины, смежной с a_2 , а $t \ge 1$ — количество треугольников в окрестности a_1 (отметим, что $2t \le k$).

Сдвинем метки: $k \mapsto k + 3t$, метки на треугольниках уменьшим на 1 ($k + 1 \mapsto k$, $k + 2 \mapsto k + 1$ и т. д.). Оценки для f снова сохранены, а $f(a_1) < f(a_2)$, так как первая сумма уменьшилась на t(t+1)/2, а вторая увеличилась на 3t. Получили антимагическую нумерацию.

Случай 8. В окрестности a_1 нет висячих вершин и цепей P_3 , но есть треугольник, в окрестности a_2 есть цепь P_3 , но нет висячих вершин и треугольников. Пусть в этом случае $k \ge 1$ — максимальный индекс вершины, принадлежащей какой-либо из цепей при a_2 , а $t \ge 1$ — количество треугольников при a_1 (как и выше, $2t \le k$).

Поменяем местами метки k + t и k + t + 1. Как и ранее, оценки для f сохранены, а $f(a_2) < f(a_1)$, так как k + t < k + t + 1. Получили антимагическую нумерацию.

Других случаев нет. Таким образом, доказана инъективность f на A в случае $|A| \ge 3$ и показаны все возможные проблемы и способы их разрешения в случае |A| = 2.

Итак, f инъективна на V. Значит, предложенная нумерация — антимагическая.

Таким образом, в настоящей работе доказано, что (1, 2)-полярные и (1, 2)-разложимые графы являются антимагическими и приведен алгоритм, строящий для таких графов антимагическую нумерацию.

Отдельно следует отметить, что дальнейшие попытки обобщения полученных результатов на (1,k)-разложимые графы при $k \ge 3$ аналогичным методом оказались менее успешными. С усложнением структуры нижней доли алгоритм все сложнее модифицировать и он все хуже справляется с кликами малой размерности — требуется рассматривать все больше и больше частных случаев, зачастую непростых, что в конечном итоге сводит эффективность алгоритма к нулю. В целом подобное обобщение представляется возможным, но нецелесообразным.

В будущем планируется дальнейшее исследование гипотезы Хартсфилда – Рингеля об антимагичности связных графов с помощью теории декомпозиции графов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Hartsfield N., Ringel G. Pearls in Graph Theory. Boston, 1990 (revised version, 1994). P. 108-109.
- 2. Barrus M. D. Antimagic labeling and canonical decomposition of graphs // Inform. Processing Letters J. 2010. Vol. 110. Iss. 7.

Поступила в редакцию 25.02.2014.

Виталий Николаевич Калачёв – студент 5-го курса механико-математического факультета.