Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/10895
Title: . On Rosenberger's conjecture for generalized triangle groups of types (2,10,2) and (2,20,2)
Authors: Benyash-Krivets, Valery
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2004
Citation: Proceedings of the International Conference on Mathematics and its Application (ICMA 2004). Kuwait University. 2004. P. 59–74.
Abstract: Tits proved that if G is a finitely generated linear group then G contains either a non abelian free subgroup or a solvable subgroup of finite index. Let G be an arbitrary finitely generated group. One says that the Tits alternative holds for G if G contains either a non abelian free subgroup or a solvable subgroup of finite index. In this paper we prove the following theorem. Let G be a generalized triangle group of the type (2,10,2) or (2,20,2). Then G contains a free subgroup of rank 2. Hence the Tits alternative holds for G.
URI: http://elib.bsu.by/handle/123456789/10895
Appears in Collections:Архив статей механико-математического факультета до 2016 г.

Files in This Item:
File Description SizeFormat 
On Rosenberger conjecture for generalized triangle groups of type (2,10,2) and (2,20,2).pdf181,95 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.