Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/10822
Title: О разложении обобщенных треугольных групп в амальгамированное свободное произведение
Authors: Беняш-Кривец, Валерий Вацлавович
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 1999
Citation: Доклады РАН. 1999. Т. 365, № 6. С. 727–729
Abstract: В работе исследуется проблема разложения в нетривиальное амальгамированное свободное произведение обобщенных треугольных групп. Доказаны следующие две теоремы. Пусть $G=<a,b | a^{2n}=R^m(a,b)=1>$, где m>1, R(a,b) - циклически редуцированное слово в свободной группе с образующими a и b, содержащее b. Тогда G является нетривиальным амальгамированным свободным произведением. Теорема 2 утверждает следующее. Пусть $G=<a,b | a^n=R^m(a,b)=1>$, где m>2 и R(a,b) - циклически редуцированное слово в свободной группе с образующими a и b, содержащее b. Если $R(a,b)=a^{u_1}b^{v_1}\dots a^{u_s}b^{v_s}$ и произведение всех |v_i| больше двух, тогда группа G является нетривиальным амальгамированным свободным произведением. В качестве следствия из теоремы 1 получаем, что произвольная группа с двумя образующими и одним соотношением с кручением разложима в нетривиальное амальгамированное свободное произведение, что дает положительный ответ на известную гипотезу Файна (Fine B.), Левина (Levin F.) и Розенбергера (Rosenberger G.).
URI: http://elib.bsu.by/handle/123456789/10822
Appears in Collections:Архив статей механико-математического факультета до 2016 г.

Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.