Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/9297
Title: | A Framework for Object Detection and Segmentation in Medical Images Using Arbitrary Shapes |
Authors: | Alilou, M. Kovalev, V. |
Issue Date: | 2012 |
Publisher: | Минск: БГУ |
Citation: | Modeling and Simulation : MS'2012 : Proc. of the Intern. Conf., 2—4 May 2012, Minsk, Belarus. - Minsk: Publ. Center of BSU, 2012. - 178 p. - ISBN 978-985-553-010-8. |
Abstract: | Detection and segmentation objects are crucial to extract useful information from medical images [1] and still challenging tasks in CAD software development. Due to the irregular structure and high variability of objects of interest, there is no universal solution for detecting objects and segmenting them in all kinds of medical images. This work is a part of a larger project aimed mostly at detection, coarse segmentation and visualization of given objects in microscope images. The purpose of this paper is to introduce a robust framework to facilitate detecting objects with arbitrary size and shape and segmenting them in different kinds of medical images with the help of a library of irregular smooth shapes. |
URI: | http://elib.bsu.by/handle/123456789/9297 |
Appears in Collections: | 2012. Моделирование процессов систем: Труды Международной конференции |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10r 40.pdf | 346,99 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.