Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/7974
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOrlovich, Yu. L.-
dc.contributor.authorFinke, Gerd-
dc.contributor.authorGordon, Valery S.-
dc.contributor.authorZverovich, Igor-
dc.date.accessioned2012-05-07T09:25:57Z-
dc.date.available2012-05-07T09:25:57Z-
dc.date.issued2008-
dc.identifier.citationOrlovich,Yury L. Approximability results for the maximum and minimum maximal induced matching problems /Y.Orlovich, G.Finke, V.Gordon, I.Zverovich // Discrete Optimization. - 2008. - №5. - P. 584–593.-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/7974-
dc.description.abstractAn induced matching M of a graph G is a set of pairwise non-adjacent edges such that their end-vertices induce a 1-regular subgraph. An induced matching M is maximal if no other induced matching contains M. The MINIMUM MAXIMAL INDUCED MATCHING problem asks for a minimum maximal induced matching in a given graph. The problem is known to be NP-complete. Here we show that, if P 6= NP, for any " > 0, this problem cannot be approximated within a factor of n1−" in polynomial time, where n denotes the number of vertices in the input graph. The result holds even if the graph in question is restricted to being bipartite. For the related problem of finding an induced matching of maximum size (MAXIMUM INDUCED MATCHING), it is shown that, if P 6= NP, for any " > 0, the problem cannot be approximated within a factor of n1/2−" in polynomial time. Moreover, we show that MAXIMUM INDUCED MATCHING is NP-complete for planar line graphs of planar bipartite graphs.ru
dc.language.isoenru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleApproximability results for the maximum and minimum maximal induced matching problemsru
dc.typeArticleru
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
Orlovich_Finke_Gordon_Zverovich_DO_2008-v5-Is3.pdf563,34 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.