Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/339999
Title: Local information geometry for high-order binary Markov chains and its applications
Authors: Voloshko, V. A.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::МЕЖОТРАСЛЕВЫЕ ПРОБЛЕМЫ::Статистика
Issue Date: 2025
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIV Intern. Conf., Minsk, Sept. 24–27, 2025 / Belarusian State Univ. ; eds.: Yu. Kharin (ed.-in-chief) [et al.]. – Minsk : BSU, 2025. – Pp. 266-271.
Abstract: We present some new results on asymptotic properties of statistics derived from purely random (uniformly distributed) binary sequence of length n → +∞. These results are obtained by methods of information geometry applied to manifolds of Markov probability distributions on the set of infinite binary sequences. In the talk we briefly describe underlying information-geometric theory and technics of proofs and show how finding probabilistic and statistical properties comes down to geometric and combinatorial computations
URI: https://elib.bsu.by/handle/123456789/339999
ISBN: 978-985-881-830-2
Licence: info:eu-repo/semantics/restrictedAccess
Appears in Collections:2025. Computer Data Analysis and Modeling: Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
266-271.pdf448,43 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.