Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/339202Полная запись метаданных
| Поле DC | Значение | Язык |
|---|---|---|
| dc.contributor.author | Mardvilko, T. S. | - |
| dc.date.accessioned | 2025-12-19T12:40:09Z | - |
| dc.date.available | 2025-12-19T12:40:09Z | - |
| dc.date.issued | 2025-04-16 | - |
| dc.identifier.citation | Mardvilko TS. Uniform rational approximation of the odd and even Cauchy transforms. Sbornik Mathematics. 2025 Jan 1;216(2):239–56. | ru |
| dc.identifier.uri | https://elib.bsu.by/handle/123456789/339202 | - |
| dc.description.abstract | Best uniform rational approximations of the odd and even Cauchy transforms are considered. The results obtained form a basis for finding the weak asymptotics of best uniform rational approximations of the odd extension of the function x α , x ∈ [0, 1], to [−1, 1] for all α ∈ (0, +∞) \ (2N − 1), which complements some results due to Vyacheslavov. The strong asymptotics of the best rational approximations of this function on [0, 1] and its even extension to [−1, 1] were found by Stahl. It follows from these results that for α ∈ (0, +∞)\N the best rational approximations of the even and odd extensions of the above function show the same weak asymptotic behaviour. | ru |
| dc.description.sponsorship | This research was carried out with the support of the National Academy of Sciences of Belarus in the framework of the State Programme of Scientific Research “Convergence — 2025” (project no. ГР 20211888). | ru |
| dc.language.iso | en | ru |
| dc.rights | info:eu-repo/semantics/openAccess | ru |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ | ru |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
| dc.title | Uniform rational approximation of the odd and even Cauchy transforms | ru |
| dc.type | article | ru |
| dc.rights.license | CC BY 4.0 | ru |
| dc.identifier.DOI | 10.4213/sm10116e | - |
| Располагается в коллекциях: | Кафедра теории функций (статьи) | |
Полный текст документа:
| Файл | Описание | Размер | Формат | |
|---|---|---|---|---|
| sm10116_eng.pdf | 550,76 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.

