Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/323041
Title: Two-dimensional fullerene-based monolayer materials assembled by C80 and Sc3N
Authors: Zhao, Y.
Guo, Y.
Zhao, Y.
Yu, X.
Cherenda, N.
Su, Y.
Zhao, J.
Keywords: ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Электроника. Радиотехника
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Issue Date: 2024
Publisher: Royal Society of Chemistry
Citation: Phys. Chem. Chem. Phys. 2024; 26:10841
Abstract: Construction of two-dimensional (2D) materials using fullerenes as building blocks has attracted particular attention, primarily due to their ability to integrate desired functionalities into devices. However, realization of stable 2D phases of polymerized fullerenes remains a big challenge. Here, we propose two stable 2D monolayer phases with covalently bridged C80 cages, namely α-C80-2D and β-C80-2D, which are semiconductors with strong absorption in the long wave range and appreciable carrier mobility, respectively. The high stability originates from the bond energy released by the [2+2] cycloaddition polymerization of C80 is greater than the deformation energy of a cage. Starting from α-C80-2D, endohedral incorporation of the Sc3N molecule into each C80 cage leads to 2D semiconductors of α-Sc3N@C80-2D and α′-Sc3N@C80-2D, which possess exceptional stability and diverse physical properties, including unique electronic band structures, strong optical absorption in the visible (VIS) to near-infrared (NIR) regime, and anisotropic optical characteristics. Remarkably, a temperature-induced order-disorder transition in the α-Sc3N@C80-2D phase has been observed at elevated temperatures above 600 K. These findings expand the family of 2D carbon materials and provide useful clue for the potential applications of fullerene-assembled monolayer networks.
URI: https://elib.bsu.by/handle/123456789/323041
DOI: 10.1039/d3cp04028c
Scopus: 85189702092
Sponsorship: This work was supported by the National Natural Science Foundation of China (91961204 and 12174045), the Fundamental Research Funds for the Central Universities (DUT22RC(3)009), and the financial support of our International Cooperative Project (ICR2304). The computational resources utilized in this research were provided by the Supercomputing Center of the Dalian University of Technology and Shanghai Supercomputer Center.
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Кафедра физики твердого тела и нанотехнологий (статьи)

Files in This Item:
File Description SizeFormat 
d3cp04028c.pdf2,26 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.