Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/319703
Заглавие документа: Predicting Chaos in the Three-body Problem with Quaternion-valued Neural Networks
Авторы: Buscarino, Arturo
Fortuna, Luigi
Famoso, Carlo
La Spina, Giuseppe
Puglisi, Gabriele
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2023
Издатель: Minsk : Education and Upbringing
Библиографическое описание источника: Nonlinear Phenomena in Complex Systems. - 2023. - Vol. 26. - № 3. - P. 247-256
Аннотация: The main result of the recent Double Asteroid Redirection Test (DART) mission, performed by NASA, consisted in the first evidence of the possibility of diverting the orbit of a celestial body. The mission planning took care of several factors, many of them uncertain, and resulted in a successful attempt which paved the way for future mission aimed at protecting the planet from dangerous collisions with other celestial bodies. The DART mission has been recently discussed in terms of its nonlinear dynamics through simple mathematical models based on the classic Kepler problems, analysed by using appropriate integration algorithms and by means of an analog/digital electronic circuit emulator to realize faster and qualitative more efficient experiments. In this communication, we focus on the special case of the occurrence of chaotic oscillations in the three-body problem, where the high sensitivity on initial conditions and digit precision makes even the analogue approach less practical. The use of quaternion-valued neural networks to predict the behavior in these case is explored showing the possibility of a good prediction of chaos even in presence of a limited precision.
URI документа: https://elib.bsu.by/handle/123456789/319703
ISSN: 1561-4085
DOI документа: 10.5281/zenodo.10033087
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2023. Volume 26. Number 3

Полный текст документа:
Файл Описание РазмерФормат 
v26no3p247.pdf1,27 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.