Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/313219
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorЮхимчук, Александр Сергеевич-
dc.date.accessioned2024-06-05T07:21:27Z-
dc.date.available2024-06-05T07:21:27Z-
dc.date.issued2024-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/313219-
dc.description.abstractМагистерская диссертация, 49 страниц, 19 рисунков, 36 источников, 31 формула Ключевые слова: АВТОНОМНЫЙ ТРАНСПОРТ, ОБУЧЕНИЕ С ПОДКРЕПЛЕНИЕМ, МАШИННОЕ ОБУЧЕНИЕ, НЕЙРОННЫЕ СЕТИ, УПРАВЛЕНИЕ АВТОНОМНЫМ ТРАНСПОРТОМ, ОПТИМИЗАЦИЯ ПОЛИТИКИ, СИМУЛЯТОР, ПРЕДСТАВЛЕНИЕ СОСТОЯНИЙ. Объектом исследования являются методы планирования автономного транспорта. Предметом исследования является применение алгоритмов глубокого обучения с подкреплением при планировании траектории беспилотного автономного транспорта. Целью работы является исследование методов глубокого обучения с подкреплением и анализ их применимости в управлении автономным транспортом. В ходе работы были исследованы методы глубокого обучения с подкреплением и их возможно в применении при планировании траектории автономного транспорта. Предлагается метод управления в симуляторе CarRacing, основанный на алгоритме PPO. Показано, что возможно достичь хорошего качества алгоритма при отрисовке траектории движения на текущем кадре по сравнению с объединением состояний в один тензор, как это обычно делается. Также показано, что история прошлых действий может значительно улучшить качество алгоритма с помощью введения дополнительной нейронной сети, кодирующей историю действий. Проведен сравнительный анализ предложенных методов по сравнению с теми, которые обычно используются для управления с среде CarRacing. Полученные результаты работы могут быть использованы различными предприятиями и организациями, осуществляющими исследования в области автономного транспорта и сталкивающимися с проблемами управления, а именно планирования, так как предложенный метод позволяет достичь большего качества при уменьшении затрат на память при использовании стандартных методов.ru
dc.language.isoruru
dc.publisherБГУ, ФПМИ, Кафедра дискретной математики и алгоритмикиru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатикаru
dc.titleУправление автономным транспортом нейросетевыми моделями с подкреплением: магистерская диссертация / Александр Сергеевич Юхимчук; БГУ, Факультет прикладной математики и информатики, Кафедра дискретной математики и алгоритмики; науч. рук. Толстиков А. А.ru
dc.typemaster thesisru
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:1-31 81 09 - "Алгоритмы и системы обработки больших объемов информации"

Полный текст документа:
Файл Описание РазмерФормат 
МД_АСОБД_Юхимчук(2024).pdf5,52 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.