Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306266
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorYatskou, Mikalai M.
dc.contributor.authorSmolyakova, Elizabeth V.
dc.contributor.authorSkakun, Victor V.
dc.contributor.authorGrinev, Vasily V.
dc.date.accessioned2023-12-12T12:42:20Z-
dc.date.available2023-12-12T12:42:20Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 49-53.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306266-
dc.description.abstractAn approach for simulation modelling of Single Nucleotide Polymorphisms (SNPs) in DNA sequences is proposed, which implements the generation of random events according to the beta or normal distributions, the parameters of which are estimated from the available experimental data. This approach improves the accuracy of determining SNPs in DNA molecules. The verification of the developed model and analysis methods was carried out on a set of reference data provided by the GIAB consortium. The best results were obtained for the machine learning model of Conditional Inference Trees – the accuracy of the SNP identification by the score F1 is 82,8 %, which is higher than those obtained by traditional SNP identification methods, such as binomial distribution, entropy-based and Fisher's exact tests
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleSimulation Modelling for Machine Learning Identification of Single Nucleotide Polymorphisms in Human Genomes
dc.typeconference paper
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
49-53.pdf252,63 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.