Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/306259
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Shchurov, Nikolay | |
dc.contributor.author | Isaev, Igor | |
dc.contributor.author | Barinov, Oleg | |
dc.contributor.author | Myagkova, Irina | |
dc.contributor.author | Dolenko, Sergei | |
dc.date.accessioned | 2023-12-12T12:42:19Z | - |
dc.date.available | 2023-12-12T12:42:19Z | - |
dc.date.issued | 2023 | |
dc.identifier.citation | Pattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 316-319. | |
dc.identifier.isbn | 978-985-881-522-6 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/306259 | - |
dc.description.abstract | The paper presents a method for selecting essential input features when predicting the geomagnetic Dst index, based on iterative selection of features with the highest correlation with respect to the target variable and exclusion of features with high cross-correlation. The models were trained on data from October 1997 to 2017. The criterion for the quality of the forecast using selected features was the root-mean squared error of the Dst index forecast based on the selected set of features on independent data (2018-2022) | |
dc.description.sponsorship | This study has been performed at the expense of the grant of the Russian Science Foundation, project no. 23-21-00237, https://rscf.ru/en/project/23-21-00237/. | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.title | Iterative Selection of Essential Input Features under Conditions of their Multicollinearity in Space Weather Time Series Forecasting | |
dc.type | conference paper | |
Располагается в коллекциях: | 2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
316-319.pdf | 391,41 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.