Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306226
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBarysheva, Iolanta
dc.contributor.authorVasilevsky, Konstantin
dc.date.accessioned2023-12-12T12:42:13Z-
dc.date.available2023-12-12T12:42:13Z-
dc.date.issued2023
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 176-179.
dc.identifier.isbn978-985-881-522-6
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306226-
dc.description.abstractThis study investigates the efficiency of gradient boosting algorithms, particularly XGBoost, in time series forecasting. We optimize the parameters using RandomizedSearchCV and apply the model to daily stock prices of the Ethereum cryptocurrency. Additionally, we compare the prediction performance of XGBoost with two other models, LightGBM and CatBoost. Our findings reveal that the LightGBM model outperforms both CatBoost and XGBoost in terms of accuracy for time series prediction
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.titleTime series forecasting using gradient boosting algorithms
dc.typeconference paper
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
176-179.pdf344,75 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.