Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/306220
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShah, Imad Ali-
dc.contributor.authorMalik, Fahad Mumtaz-
dc.contributor.authorAshraf, Muhammad Waqas-
dc.date.accessioned2023-12-12T12:42:12Z-
dc.date.available2023-12-12T12:42:12Z-
dc.date.issued2023-
dc.identifier.citationPattern Recognition and Information Processing (PRIP’2023). Artificial Universe: New Horisont : Proceedings of the 16 th International Conference, Belarus, Minsk, October 17–19, 2023 / Belarusian State University : eds. A. Nedzved, A. Belotserkovsky. – Minsk : BSU, 2023. – Pp. 147-152.-
dc.identifier.isbn978-985-881-522-6-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/306220-
dc.description.abstractComputer vision researchers have extensively worked on fundamental infrared visual recognition for the past few decades. Among various approaches, deep learning has emerged as the most promising candidate. However, Infrared Small Object Segmentation (ISOS) remains a major focus due to several challenges including: 1) the lack of effective utilization of local contrast and global contextual information; 2) the potential loss of small objects in deep models; and 3) the struggling to capture fine-grained details and ignore noise. To address these challenges, we propose a modified U-Net architecture, named SFA-UNet, by combining Scharr Convolution (SC) and Fast Fourier Convolution (FFC) in addition to vertical and horizontal Attention gates (AG) into U-Net. SFA-UNet utilizes double convolution layers with the addition of SC and FFC in its encoder and decoder layers. SC helps to learn the foreground-to-background contrast information whereas FFC provide multi-scale contextual information while mitigating the small objects vanishing problem. Additionally, the introduction of vertical AGs in encoder layers enhances the model's focus on the targeted object by ignoring irrelevant regions. We evaluated the proposed approach on publicly available, SIRST and IRSTD datasets, and achieved superior performance by an average 0.75±0.25% of all combined metrics in multiple runs as compared to the existing state-of-the-art methods. The code can be accessed at https://github.com/imadalishah/SFA_UNet-
dc.language.isoen-
dc.publisherMinsk : BSU-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика-
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика-
dc.titleAshraf SFA-UNet: More Attention to Multi-Scale Contrast and Contextual Information in Infrared Small Object Segmentation-
dc.typeconference paper-
Располагается в коллекциях:2023. Pattern Recognition and Information Processing (PRIP’2023). Artificial Intelliverse: Expanding Horizons

Полный текст документа:
Файл Описание РазмерФормат 
147-152.pdf562,5 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.