Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/305590
Заглавие документа: Synthesis and Electrical Percolation of Highly Amorphous Polyvinyl Alcohol/Reduced Graphene Oxide Nanocomposite
Авторы: Adami, R.
Lamberti, P.
Casa, M.
D’Avanzo, N.
Ponticorvo, E.
Cirillo, C.
Sarno, M.
Bychanok, D.
Kuzhir, P.
Yu, C.
Xia, H.
Ciambelli, P.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Электроника. Радиотехника
Дата публикации: 2023
Издатель: MDPI
Библиографическое описание источника: Materials 2023; 16(11):4060
Аннотация: Polyvinyl alcohol is the most commercially water-soluble biodegradable polymer, and it is in use for a wide range of applications. It shows good compatibility with most inorganic/organic fillers, and enhanced composites may be prepared without the need to introduce coupling agents and interfacial modifiers. The patented high amorphous polyvinyl alcohol (HAVOH), commercialized with the trade name G-Polymer, can be easily dispersed in water and melt processed. HAVOH is particularly suitable for extrusion and can be used as a matrix to disperse nanocomposites with different properties. In this work, the optimization of the synthesis and characterization of HAVOH/reduced graphene oxide (rGO) nanocomposite obtained by the solution blending process of HAVOH and Graphene Oxide (GO) water solutions and ‘in situ’ reduction of GO is studied. The produced nanocomposite presents a low percolation threshold (~1.7 wt%) and high electrical conductivity (up to 11 S/m) due to the uniform dispersion in the polymer matrix as a result of the solution blending process and the good reduction level of GO. In consideration of HAVOH processability, the conductivity obtained by using rGO as filler, and the low percolation threshold, the nanocomposite presented here is a good candidate for the 3D printing of a conductive structure. © 2023 by the authors.
URI документа: https://elib.bsu.by/handle/123456789/305590
DOI документа: 10.3390/ma16114060
Scopus идентификатор документа: 85161544616
Финансовая поддержка: This research was funded by European Union Horizon 2020 H2020-MSCA-RISE-2016-734164 and H2020-MSCA-RISE-2018-823728, FARB funding University of Salerno-Italy, Academy of Finland 334270.All the authors acknowledge the project Graphene 3D funded by European Union Horizon 2020 H2020-MSCA-RISE-2016-734164. N.D., P.L., P.K., P.C. and R.A. acknowledge the project DiSeTCom funded by European Union H2020-MSCA-RISE-2018-823728, N.D., P.L., and R.A. acknowledge the FARB funding University of Salerno-Italy, P.K acknowledge the Academy of Finland 334270.
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Статьи НИУ «Институт ядерных проблем»

Полный текст документа:
Файл Описание РазмерФормат 
materials-16-04060-v2.pdf5,57 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.