Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/305569
Заглавие документа: Experimental and simulation studies on damage mechanisms of tungsten and molybdenum under compressed plasma flow irradiation
Авторы: Zhang, L.
Zhang, X.
Li, N.
Zhang, P.
Mei, X.
Wang, Y.
Uglov, V.V.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Металлургия
Дата публикации: 2023
Издатель: Institute of Physics
Библиографическое описание источника: Nucl. Fusion 2023; 63(7):076010
Аннотация: The failure mechanism of plasma-facing components (PFCs) under extreme plasma conditions relevant for fusion reactors were investigated. Here, edge-localized mode (ELM)-like transient thermal shock irradiation experiments were performed on tungsten and molybdenum using compressed plasma flow, and combined with thermal-mechanical analysis by means of finite element simulations to discuss the grain structure evolution, cracking behavior and variations of hardness. When ELM-like thermal shock irradiation was sufficient to melt tungsten and molybdenum, a submicron-sized cellular sub-grain structure was created on their surface due to the high temperature gradient of the molten layer under the effect of Bénard-Marangoni instability. Rapid directional solidification from the bottom of the molten layer to the surface induced the formation of columnar grains dominated by the <200> orientation. While the formation of cellular sub-grains increased hardness, the thermal effect of irradiation and the formation of columnar grains led to softening. The high thermal stress induced by the ELM-like thermal shock produced macro-cracks and micro-cracks on the surface of tungsten and only micro-cracks on the surface of molybdenum. Macro-cracks were generated due to the intrinsic brittleness of tungsten. As a result of stress evolution, longitudinal macro-cracks extending perpendicular to the surface experienced transverse transformation within the material. Micro-cracks formed due to the embrittlement of the re-solidification zone, and their width increased with the melting depth. These results help us to understand failure mechanisms in PFCs under extreme operating conditions and are valuable for developing future fusion reactors
URI документа: https://elib.bsu.by/handle/123456789/305569
DOI документа: 10.1088/1741-4326/acd016
Scopus идентификатор документа: 85160513782
Финансовая поддержка: This work was supported by the National Natural Science Foundation of China (Nos. 11975065 and 12211530445).
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Кафедра физики твердого тела и нанотехнологий (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
Zhang_2023_Nucl._Fusion_63_076010.pdf20,53 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.