Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/291873
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKharin, A. Yu.
dc.contributor.authorTon That Tu
dc.contributor.authorSheuka, I. Yu.
dc.date.accessioned2023-01-13T09:38:39Z-
dc.date.available2023-01-13T09:38:39Z-
dc.date.issued2022
dc.identifier.citationComputer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 40-45.
dc.identifier.isbn978-985-881-420-5
dc.identifier.urihttps://elib.bsu.by/handle/123456789/291873-
dc.description.abstractThe problem of sequential testing of hypotheses on parameters of an observed stochastic data flow is considered. Simple and composite hypotheses setting are investigated for 3 families of data flows: homogeneous independent observations, independent observations with inhomogeneities, dependent observations forming Markov chains. The interest is focused on two issues: performance characteristics (error probabilities and mathematical expectation of the random number of observations) calculation, and robustness analysis of sequential tests under distortions (deviations from the hypothetical model assumptions). Approaches to solve these two problems are proposed and developed via construction of asymptotic expansions (w.r.t. the discretization parameter and the distortion levels) of the performance characteristics. The robust sequential procedures are constructed within families of generalized sequential test
dc.language.isoen
dc.publisherMinsk : BSU
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.titlePerformance and robustness in sequential analysis of stochastic data flows
dc.typeconference paper
Располагается в коллекциях:2022. Computer Data Analysis and Modeling: Stochastics and Data Science

Полный текст документа:
Файл Описание РазмерФормат 
40-45.pdf342,8 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.