Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/291855
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Sokolova, M. V. | |
dc.contributor.author | Romanova, O. N. | |
dc.contributor.author | Kolomiets, N. D. | |
dc.contributor.author | Bosiakov, S. M. | |
dc.date.accessioned | 2023-01-13T09:38:36Z | - |
dc.date.available | 2023-01-13T09:38:36Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 184-186. | |
dc.identifier.isbn | 978-985-881-420-5 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/291855 | - |
dc.description.abstract | The forecasting of children cases (under 7 years of age) by non-invasive forms of pneumococcal infection was carried out using a mathematical model of time series. A database was used with clinical and epidemiological information about 435 patients hospitalized for 3 years. It is found out that the average number of cases is 12 children per month. The obtained results can be used for medium-term and long-term forecasting of the patient number needing medical care during a calendar year, and also for the organization and planning of a corresponding complex of preventive and therapeutic measures | |
dc.description.sponsorship | The study was supported by State Program of Scientific Research “Convergence” (Instruction No. 1.7.1.4) | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.title | Forecasting cases of children disease by non-invasive forms of pneumococcal infection | |
dc.type | conference paper | |
Располагается в коллекциях: | 2022. Computer Data Analysis and Modeling: Stochastics and Data Science |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
184-186.pdf | 254,06 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.