Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/291851
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Piterbarg, V. I. | |
dc.contributor.author | Alieva, P. N. | |
dc.date.accessioned | 2023-01-13T09:38:35Z | - |
dc.date.available | 2023-01-13T09:38:35Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIII Intern. Conf., Minsk, Sept. 6–10, 2022 / Belarusian State University ; eds.: Yu. Kharin [et al.]. – Minsk : BSU, 2022. – Pp. 168-171. | |
dc.identifier.isbn | 978-985-881-420-5 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/291851 | - |
dc.description.abstract | We study an asymptotic behavior of the ruin probability P( max t∈[0,T] Q n (t) > x T ), t = 0,1,2,..., for T = 0 and large x = x0 (instant ruin probability) and for large both T and x T (global ruin probability). The random process Qn(t) models portfolio Qn(t) = ∑n i=1 λiXi(t), where Xi(t),i = 1,...,n, are independent random sequences, they can be interpreted as the financial loss amount in time claimed from the ith direct insurer or as reliability index of components of a technical system. Weights λi, i = 1,...n, are the proportionality factors of the risks being shared. It is assumed that the risks Xi(t), i = 1,...,n, are Weibull like in a sense that they are similar to Weibull ones in terms of the probability of producing large values. | |
dc.language.iso | en | |
dc.publisher | Minsk : BSU | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.title | On large excursions probabilities for Gaussian copula vector processes. Applications in reliability and finance | |
dc.type | conference paper | |
Располагается в коллекциях: | 2022. Computer Data Analysis and Modeling: Stochastics and Data Science |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
168-171.pdf | 347,27 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.