Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/291822
Заглавие документа: Machine-learning based analysis of time sequences for multiplexed microresonator sensor
Авторы: Tcherniavskaia, Elina
Saetchnikov, Anton
Saetchnikov, Vladimir
Ostendor, Andreas
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: мая-2022
Библиографическое описание источника: a Ruhr University Bochum, Chair of Applied Laser Technologies, Universit¨atsstraße 150, Bochum, Germany, 44801
Аннотация: This paper discusses an application of machine-learning solution for processing of the dynamical sensing responses collected with a multiplexed microresonator detector. Performance of a long short-term memory network (LSTM) out of bidirectional and dropout layers is analyzed on example of the experimental data collected for a temporal gradient of the local refractive index. We experimentally demonstrate the possibility for analyte parameters prediction with accuracy of > 99% based on a set of complex non-linear highly specifc time sequences of the intensities radiated by the microcavities which is obtained within a timescale 4 times shorter than required to reach the steady state. Optimization possibilities in terms of the number of microresonator signals to consider for the LSTM network training along with the complexity of its architecture are analyzed. Keywords: optical microresonator, sensing, machine learning, whispering gallery mode, multiplexing
URI документа: https://elib.bsu.by/handle/123456789/291822
ISBN: https://doi.org/10.1117/12.2621383
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:Кафедра ядерной физики (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
Чернявская публPE_22.pdf183,77 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.