Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/291581
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKholmetskii, A.L.-
dc.contributor.authorYarman, T.-
dc.contributor.authorMissevitch, O.V.-
dc.date.accessioned2023-01-10T08:54:10Z-
dc.date.available2023-01-10T08:54:10Z-
dc.date.issued2022-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/291581-
dc.description.abstractWe address the Klein-Gordon equation for a spinless charged particle in the presence of an electromagnetic (EM) field, and focus on its known shortcoming, related to the existence of solutions with a negative probability density. We disclose a principal way to overcome this shortcoming, using our recent results obtained in the analysis of quantum phase effects for charges and dipoles, which prove the need to abandon the customary definition of the mo- mentum operator for a charged particle in an EM field through its canonical momentum, and to adopt the more general definition of this operator through the sum of mechanical and elec- tromagnetic momenta for the system “charged particle in an EM field”. We show that the ap- plication of the new energy-momentum operator to the Klein-Gordon equation actually elimi- nates solutions with negative probability density. Some implications of the obtained results are discussed.ru
dc.language.isoenru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleKlein-Gordon equation for electrically charged particles with new energy-momentum operatorru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:Кафедра ядерной физики (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
1Kholmetskii et al. Proc. clean G.pdf125,4 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.