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Abstract
We address the Klein-Gordon equation for a spinless charged particle in the presence of an
electromagnetic (EM) field, and focus on its known shortcoming, related to the existence of
solutions with a negative probability density. We disclose a principal way to overcome this
shortcoming, using our recent results obtained in the analysis of quantum phase effects for
charges and dipoles, which prove the need to abandon the customary definition of the mo-
mentum operator for a charged particle in an EM field through its canonical momentum, and
to adopt the more general definition of this operator through the sum of mechanical and elec-
tromagnetic momenta for the system “charged particle in an EM field”. We show that the ap-
plication of the new energy-momentum operator to the Klein-Gordon equation actually elimi-
nates solutions with negative probability density. Some implications of the obtained results
are discussed.

1. Introduction
Relativistic quantum mechanics includes two fundamental equations: the Klein-Gordon equa-
tion, originally conceived for spinless charged particle, as well as the Dirac equation for an
electron. In the presence of electromagnetic (EM) field, both equations imply the following
definitions of operators of energy and momentum (see, e.g. [1])
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which ensure the gauge-invariance and the Lorentz invariance. Here,
t

iE



 ˆ is the energy

operator,  ip̂ is the momentum operator in the absence of EM field, e is the electron
charge, , A are the scalar and the vector potentials, correspondingly, and c is the light veloci-
ty in vacuum.

In what follows, we mainly focus on the Klein-Gordon equation, which in the presence of
EM field reads as [2]
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where  t,r is the wave function of spinless charged particle e with the rest mass m.
A serious difficulty related to eq. (2) is the emergence of solutions with a negative

probability density (r) for a charged particle, which does not have a reasonable physical in-
terpretation. This fact can be easily demonstrated in the case of time-independent EM field,
where the probability density does not depend on time, too. For such stationary states, the var-
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iables r and t are separated from each other, and at a motion of charged particle e in the elec-
tric field of the immovable point-like charged source particle, characterized with the scalar
potential  and the vector potential A=0, we get the solutions (see, e.g. [3])

    iEteut  rr, , (3)
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where E is the energy of the moving particle,  is the scalar potential produced by the host

charge, and
__
u denotes the complex conjugate of u.

One can see from eq. (4) that at very small distances r between moving charged particle e
and an immovable point-like host charge, the probability density (r) for particle e, in general,
can acquire negative values, which is obviously senseless from the physical viewpoint.

This result indicates that the Klein-Gordon equation for charged particles in an EM field
occurs inconsistent. Nevertheless, it was emphasized in [4] that this equation still remains ap-
plicable to quantum theory of scalar fields, though some further attempts of its application to
charged particles (e.g., with two-component wave function) are also known (see, e.g. [5]).

However, the crucial question – What is the deep reason, which makes inconsistent the
Klein-Gordon equation for a spinless charged particle? – remains unanswered for many dec-
ades.

All the same, as we will show below, the firsts step towards answering this question was
made at the beginning of the 21th century in the area of physics, which seems to lie far from
any problems related to the Klein-Gordon equation: the experimental discovery of two quan-
tum phase effects for dipoles: the Aharonov-Casher (A-C) phase for a moving magnetic di-
pole [6], and He, McKellar and Wilkens (HMW) phase for a moving electric dipole [7].

We remind that, before the performance of these experiments, an existence of the A-C
phase for the moving magnetic dipole in an electric field has been predicted in [8], while the
existence of the HMW phase for the moving electric dipole in a magnetic field has been pre-
dicted in [9, 10], and both of these predictions were made by using particular expressions for
corresponding Lagrangians, describing magnetic/electric dipoles in an EM field. As the result,
the actual physical meaning of the A-C and HMW phase effects was not clarified even after
their experimental discoveries [6, 7].

In our recent papers [11-15], we suggested three new principal steps:
- to involve an explicitly covariant expression for the Lagrangian of electric/magnetic di-

pole in an EM field, which allowed us to find a full set of quantum phase effects for moving
dipoles, next to the A-C and HMW phases;

- to disclose the physical meaning of quantum phase effects for dipoles as the superposi-
tion of the corresponding quantum phases for their point-like charges;

- to show the existence of two new quantum phases for charges, named by us as the com-
plementary electric and complementary magnetic A-B phases, which allow to explain the full
set of quantum phase effects for moving dipoles through the introduced principle of Superpo-
sition of Quantum Phases (abbreviated below as the SQP). Here, we emphasize that the valid-
ity of this principle directly follows from the linearity of fundamental equations of quantum
mechanics.

For convenience, in section 2 we shortly reproduce these results and show that the ob-
tained full set of quantum phase effects for charged particles, moving in EM field, cannot be
derived from the Schrödinger equation or other fundamental equations of quantum mechanics,
when the customary definition of the momentum operator
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is applied. (Hereinafter pM denotes the mechanical momentum of charged particle).
Simultaneously we emphasize the necessary condition for inclusion of the complementary

electric and complementary magnetic A-B phases into solutions of fundamental equations of
quantum mechanics, which at the first time has been found in ref. [14] as the requirement to
adopt the new definition of the momentum operator in the form

EMMi ppp ˆˆˆ   . (6)
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is the interactional EM momentum for charged particle in an EM field; E, B respectively de-
note the external electric and magnetic field, and Ee, Be stand for the electric and magnetic
field of charged particle.

Next, in section 2, we explicitly derive the full set of quantum phase effects for a charged
particle in an EM field in the weak relativistic limit, using the new momentum operator (6) in
the Hamiltonian of the Schrödinger equation.

Considering the strong relativistic case, covered by the Dirac equation and the Klein-
Gordon equation, and defining the appropriate modifications of these equations, aimed to in-
clude into their solutions the complementary electric and magnetic A-B phases, we have a
single option left out, which ensures both the relativistic invariance and the gauge invariance:
to replace the four-vector {, A} by the four-vector {UEM/c, pEM}, where UEM being the inter-
actional EM energy for the system “charged particle in an EM field”. Hence, in the presence
of EM field, eqs. (1a-b) should be modified to the form
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in the Klein-Gordon equation for electrically charged particle, which in the four-form reads as
[15]

EMpii  ˆ  . (8c)

Here
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represents the interactional EM energy for the system “charged particle in an EM field”,
=0…3, and EMpˆ stands for the operator of EM four-momentum.

Earlier, we have already demonstrated the successful application of the new energy-
momentum operator (8c) to the solution of the Dirac-Coulomb equation for the quantum one-
body problem, where we obtained the same gross and fine structure of energy levels for
hydrogenlike atoms, like in the standard approach (for details, see [15]).

In the present contribution, for further validation of the new energy-momentum operators
(8a-b), we consider its application to the Klein-Gordon equation and show that the replace-
ment of the standard energy-momentum operator (1a-b) by its new form (8a-b) essentially af-
fects its solutions their implications. In the present paper, we will focus on a particular, but
important problem of the motion of an electrically charged particle in the electric field of an
immovable point-like host charge. We will show that the application of eqs. (8a-b) instead of
eqs. (1a-b) does in effect modify the solution of the standard Klein-Gordon equation (4) to a
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new form, which ensures a positive probability density (r) in the entire space. By such a
way, we not only demonstrate the successful application of the new energy-momentum opera-
tor (8a-b) to Klein-Gordon equation, but also overcome the annoying obstacle to the applica-
tion of this equation to electrically charged scalar particles.

Finally, we conclude in section 4.

2. Quantum phases for dipoles and point-like charges indicate the necessity
to re-define the momentum operator
By the end of the 20th century, there were known the electric and magnetic Aharonov-Bohm
(A-B) quantum phase effects for point-like charges [16], as well as the A-C [8] and HMW [9,
10] phase effects for magnetic and electric dipole, correspondingly, and all these phases have
been observed [17, 6, 7].

At the same time, the application of particular expressions for the Lagrangian of dipoles
in the derivation of the A-C and HMW phases left unanswered the question of the possible
existence of more quantum phase effects for dipoles and their physical meaning.

This situation motivated us [11, 12] to continue further studies on quantum phase effects
for dipoles on the basis of the general covariant expression for the Lagrangian density of a
material medium in an EM field [18]

2
 FML  , (9)

where M is the magnetization-polarization tensor, and F is the tensor of EM field.
Integrating the Lagrangian density (9) over the volume of a compact dipole, we obtain the

Lorentz-invariant Lagrangian [11],

BmEp L (10)

with a subsequent derivation of a new motional equation and a new Hamilton function for the
dipole [11, 12]. Here p (m) stands for the electric (magnetic) dipole moment, and E, B desig-
nate the electric and magnetic fields, correspondingly. Further transition to the quantum limit
allowed obtaining a complete expression for the quantum phase of the dipole [11, 12]. Ex-
cluding the Stark phase [19] and the Zeeman phase [20], which do not explicitly depend on
the velocity of dipole v, we obtain four velocity-dependent components [11, 12], which in the
weak relativistic limit, up to the terms (v/c)3, read as:
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 , (11)

where all quantities are evaluated in the laboratory frame.
The identification of four quantum phases for a moving electric/magnetic dipole defi-

nitely actualizes the problem of their physical interpretation on the basis of some general and
universal approach applicable to each of the phases.

Such a universal approach has been proposed in [13-15], where we emphasized that, due
to the linearity of the fundamental quantum mechanical equations, the physical meaning of
quantum phases for a moving dipole should be understood through a superposition of corre-
sponding quantum phases for all electric charges composing the dipole.

This novel idea, however, immediately brought up a serious difficulty, related to the fact
the magnetic A-B phase – a sole quantum phase previously known for a point-like charge
with an explicit dependence on its velocity v – obviously could not explain the origin of four
quantum phases for moving dipoles in eq. (11). Therefore, if one adopts the correctness of the
SQP principle, then one has to recognize the existence of more, previously unknown, quan-
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tum phase effects for point-like charged particles, in addition to the electric and magnetic A-B
phases.

In a deeper insight to this problem, it is convenient to express all terms of eq. (11) though
the scalar  and vector A potentials, commonly used in the description of A-B phases for
point-like charges. This problem has been solved in [13, 14], where the following expressions
were obtained for each term of eq. (11):
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here  is the charge density, and j=u, u being the flow velocity of carriers of current of a
magnetic dipole defined in its rest frame.

Considering the above eqs. (12a-d), we first address to the HMW phase (12b) and con-
clude that its representation through the vector potential immediately reveals its physical
meaning as a superposition of magnetic A-B phases for each charge, composing the dipole.

This result is important for the validation of the entire SQP principle, given that the exist-
ence of the magnetic A-B phase and the existence of the HMW phase have already been
proved experimentally (see [17] and [7], correspondingly).

Further comparison of eq. (12a) for the A-C phase with eq. (12c) for the pE phase reveals
their common origin, where both phases can be presented as a superposition of fundamental
phases for point-like charges composing the dipole

  sv de
cc   2
1


, (13)

which we named in [13, 14] as the complementary electric A-B phase.
Next, considering the phase mB (12d), and using again the equality j=u, we find that

this phase originates from the fundamental phases for each charge of the dipole

   svAv d
c
e

cA 3
 . (14)

In [13, 14], we suggested to name cA as the complementary magnetic A-B phase.
Thus, the application of SQP to the analysis of quantum phase effects for moving elec-

tric/magnetic dipoles reveals the existence of two new fundamental quantum phases (13), (14)
for point like charges, which, being added to the known electric A-B phase

 dte


1 (15)

and magnetic A-B phase,
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cA
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1
 (16)
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yield the new expression for the total quantum phase of a charged particle in an EM field

   svAvsvsA d
c
ed

c
ed

c
edteEM 32

1


 . (17)

Next, we emphasize that our disclosure of complementary electric (13) and complemen-
tary magnetic (14) A-B phases requires re-analyzing the entire procedure with respect to an
adequate description of quantum phase effects for electrically charged particles, defined by
the general expression

   dtHH 0
ˆˆ1


 . (18)

where Ĥ ( 0Ĥ ) is the Hamiltonian of a charged particle in the presence (absence) of an EM
field.

The necessity for such a re-analysis follows from the known fact that eq. (18) with the
standard Hamiltonian of a charged particle in an EM field [21]
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ˆ
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with the standard definition of the momentum operator (5), yields only electric (15) and mag-
netic (16) A-B phases, and it fails to describe the complementary electric (13) and comple-
mentary magnetic (14) A-B phases. (Hereinafter, all variables in the Hamiltonian are under-
stood as operators).

Moreover, one can realize that the Dirac equation and the Klein-Gordon equation also fail
to describe the complementary A-B phases (13), (14) with the momentum operator (5).

Therefore, our subsequent problem is to re-define the momentum operator in an appropri-
ate way, where complementary electric (13) and complementary magnetic (14) A-B phases
are included into the solutions of the fundamental equations of quantum mechanics, described
through the Schrödinger equation for a charged particle in an EM field in a weak relativistic
limit, and through the Dirac equation and the Klein-Gordon equation in the relativistic case.

As mentioned above, one of the necessary conditions for covariance of the latter equa-
tions is the known fact that the  and A compose a four-vector. Thus, the appropriate modifi-
cation of the Hamiltonian for inclusion of the complementary A-B phases (13), (14) into the
solution of the fundamental equations of relativistic quantum mechanics leaves only one op-
tion: to replace the four-vector {, A} by the four-vector {UEM/c, PEM}, which also keeps the
gauge invariance of these equations; hence we arrive at eqs. (8a-b).

Further on, let us show, for simplicity in the weak relativistic limit, described by the
Schrödinger equation for a charged particle in an EM field, that the redefinition of the mo-
mentum operator (6) represents a necessary and sufficient condition for describing the new
quantum phases (13) and (14).

First, we have to explicitly derive the corresponding Hamiltonian. Here we take into ac-
count that in the classical Hamilton function the interactional EM energy contains only the
electric energy component UEM=e and does not include the magnetic energy component.
This reflects the known result of classical physics that the magnetic component of the Lorentz
force does not deliver work. Since the term UEM=e is already present in the standard Hamil-
tonian [21] of the Schrödinger equation, it remains sufficient to replace the vector potential
(eA/c) with the interactional EM momentum pEM due to the re-definition of the momentum
operator from (5) to (6).

Now let us show that the redefinition of the momentum operator (6) actually represents a
sufficient condition to describe new quantum phases (13), (14).
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Indeed, with the momentum operator (6), the Hamiltonian of the Schrödinger equation
for a charged particle in an EM field takes the form

 
e

M
iH EM 



2

ˆ
2p . (20)

Presenting the operator  i as mv in cross terms of eq. (20), and using the Coulomb
gauge, where the operators v and A commutate with each other, we obtain with sufficient ac-
curacy c-3

e
cm

H EM 



vp

2

2 , (21)

where we have neglected the term 222 2McPe EM , which is warranted in any practical situa-
tion.

Further on, taking into account the expression for the Hamiltonian of a particle in the ab-
sence of fields (see, e.g. [21]),


m

H
2

2 , (22)

and combining eqs. (18), (21) and (22), we obtain the total quantum phase of a charged parti-
cle in the form

  sp ddte EMEM


11
 . (23)

In order to provide a standard representation of quantum phase (23) in terms of scalar and
vector potentials, one has to define the interactional EM momentum pEM as a function of 
and A.

The solution of this problem is given in [14] with correction in [22]:
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Here Ee, Be denote the electric and magnetic fields of a charged particle, E, B stand for
the external electric and magnetic fields, correspondingly, and V designates the entire free
space.

Further, substituting eq. (24) into eq. (23), we arrive at eq. (17) for the total quantum
phase of a charged particle in an EM field, obtained above through application of SQP to
moving dipoles and charges.

By such a way, we have shown that the re-definition of the momentum operator in the
form (6) does allow including complementary electric (13) and complementary magnetic (14)
A-B phases into the solutions of the Schrödinger equation.

Thus, the results presented in this section definitely indicate the need to abandon the cus-
tomary definition of the momentum operator (5) towards its new definition (6), which thus
should be applied not only to the Schrödinger equation for a charged particle in an EM field,
but to fundamental equations of relativistic quantum mechanics, too, to ensure the unification
of the basic approaches to the fundamental equations of quantum physics.

The application of the momentum operator (6) to the Dirac equation was shortly consid-
ered in [15], both for a charged particle freely moving in an EM field and for electrically
bound charges.
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In the next section, we will focus on the Klein-Gordon equation with redefined energy
and momentum operators (8a-b).

3. Klein-Gordon equation with redefined energy and momentum operators
for charged scalar particles in EM field
We start with the case of a freely moving spinless particle, where the Klein-Gordon equation
reads as (see, e.g., [2, 3, 23])

     tcmtс
t

t ,,, 42222
2

2
2 rrr


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  , (25)

which results from the relativistic relationship 42222 cmpcE  under the replacements
tiE   ,  ip . Here, the wave function  t,r describes a scalar particle at the

equality    tt ,, rr  , and a pseudo-scalar particle at    tt ,, rr   .
The probability density defined by eq. (25) is given by the relationship

   2mc
E

r , (26)

which, in general, can be either positive, or negative, since  and t can be set arbitrari-
ly and independently on each other due to the presence in eq. (25) of the second time deriva-
tive. However, it is obvious that the negative probability density (26) is meaningless from a
physical viewpoint. Nevertheless, it was understood (see, e.g., [3]) that for a freely moving
particle in the absence of EM fields, the possibility to interpret the function (r) as a probabil-
ity density can still make sense due to the fact that under the choice of a positive solution for
the energy

4222 cmpсE  , (27)

it always remains positive in the absence of external perturbations.
Next, one can see that at positive energy (27), the probability density (26) is also positive,

and remains positive forever. Nevertheless, one has to realize that eq. (27) represents the
result of convention to discard the solutions with negative energy. We will not consider this
problem in detals (which can be found, e.g., in ref [3]), and focus below on the case of a non-
vanishing EM field, where the old (5) and new (6) definitions of the momentum operator
become differrent from each other.

More difficulties in the physical interpretation of the Klein-Gordon equation emerge,
when we consider the motion of a spinless charged particle in the presence of an EM field. In
this case, for the standard energy and momentum operators (1a-b), eq. (25) is modified to the
form (2), which, in the stationary case (which is only considered here for simplicity) yields
solutions (3) and (4) for the wave function and probability density, correspondingly.

One can see from eq. (4) that at very small distances r between a charged particle and a
point-like source of scalar potential, the probability density (r), in general, can acquire nega-
tive values, which is obviously senseless from the physical viewpoint.

Just this result was considered for many years as a principle obstacle to the application of
the Klein-Gordon equation to the description of electrically charged scalar particles.

In what follows, we would like to demonstrate that such a physically meaningless result
is eliminated when we abandon the standard definitions of the energy and momentum opera-
tors (1a-b) in favor of their new definitions (8a-b), substantiated above.

In this case, the Klein-Gordon equation acquires the form,
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and here we focus on the particular case where a charged particle is moving in an EM field,
created by a source point-like particle, resting at the origin of coordinates. This problem has
already been mentioned in the introduction section, and its solution with respect to the stand-
ard Klein-Gordon equation (2) is given by eqs. (3), (4). We also noted that eqs. (3), (4), in
general, admit a negative probability density  of the moving charged particle in the vicinity
of the source of EM field, which is meaningless.

Now we solve eq. (28), using explicit expressions for the interactional EM energy and
momentum for the considered problem:

eUEM  , 2c
e

EM
vp  , (29a-b)

where in the derivation of the interactional EM momentum (29b) we have used eq. (24) at
A=0.

Substitution of eqs. (29a-b) into eq. (28) yields
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By squaring both expressions in brackets and using the expressions for energy 2mcE 
and momentum vp m in cross-terms (where  is the Lorentz factor, and v is the velocity of
the moving particle), we re-arrange eq. (30) as

       tcmtiсte
t

i ,,, 4222
2

rrr 
















 . (31)

One can see that in the considered case A=0, eq. (31) differs from eq. (2) by the replace-
ment

  . (32)

Therefore, the same replacement (32) should be made in its solution compared to eqs. (3)
and (4), i.e.,

    iEteut  rr, , (33)

     rrr uu
mc

eE __

2






 . (34)

Classically, the Lorentz factor for a charged particle moving in the presence of a scalar
potential  is defined by the equality

2

2

mc
emc 




 . (35)

Substituting eq. (35) into eq. (34), we obtain the probability density in the form

     rrr uu
mce

e
mc
E __

22 













 . (36)
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One can see that the probability density (36) is always positive, since 12 mcE while
 2mcee  1. Therefore, as soon as we choose a positive energy solution

2242 cpcmE  for a freely moving particle far from the source of electric field, the
probability density for the particle remains positive in the entire space, including the region
near point-like source.

By such a way we have shown that the re-definition of the energy and momentum opera-
tors (8a-b) instead of corresponding customary definitions (1a-b) ensures physically meaning-
ful solutions regarding the known problem of a moving charged particle in a vicinity of im-
movable source of electric field.

At the same time, one should notice that the advantage of the new solution (36) over the
old solution (4) emerges at such small distances, where the single-particle Klein-Gordon
equation seems to be not applicable. This can be indeed the case in many practical situations;
at the same time, we can imagine the motion of a charged particle e in the vicinity of a heavy
immovable host body with the charge Ne, being much more larger than e (N>>1). In this case,
we can reliably face the situation, where the probability density of charged particle in the so-
lution (4) of the standard single-particle Klein-Gordon equation can be negative in the situa-
tion, where the approximation of a semi-classical EM field is still applicable. On the other
hand, according to our solution (34), the probability density for charged particle e remains
positive in the entire space.

. Despite the somewhat artificial character of this problem, it nevertheless indicates the
principal applicability of the Klein-Gordon equation with the new energy-momentum operator
(8a-b) to some special problems, where the approximation of semi-classical EM field in the
vicinity of a moving quantum particle can still be applied. Even if the actual practical signifi-
cance of such problems can be restricted, this result nevertheless indicates the advantage of
the new definition of the energy-momentum operator (8a-b) compared to the standard defini-
tion through the energy and canonical momentum (1a-b).

4. Conclusion
In section 2 we have shown how the analysis of quantum phase effects for moving dipoles
and point-like charges [11-15, 22] based on the superposition principle for quantum phases
allowed us to disclose two new quantum phases for point-like charges (13), (14), named the
complementary electric and complementary magnetic A-B phases, correspondingly [11, 12].

Next, we have shown that the inclusion of complementary phases (13), (14) into the solu-
tions of the fundamental equations of quantum mechanics requires to abandon the customary
definition of the momentum operator (5) and to re-define this operator in the form (6). In or-
der to preserve the gauge-invariance and Lorentz invariance in the relativistic case, the re-
definition of the momentum operator should be done conjointly with the corresponding re-
definition of the energy operator, see eqs. (8a-c).

We emphasized that the experimental discoveries of the A-B phase [17] for point-like
charges and A-C and HMW phases [6, 7] for dipoles unambiguously prove the validity of the
SQP principle and do validate subsequent new definitions of energy and momentum operators
(8a-b), that makes topical the re-analysis of the fundamental equations of quantum mechanics
with operators (8a-b).

In section 3, we applied the new energy and momentum operators (8a-b) to the Klein-
Gordon equation with respect to a particular – but historically sound – problem, dealing with
the motion of a spinless charged particle in a vicinity of a stationary point-like source of an
electric field. As is known, the solution of this problem with the application of standard ener-
gy and momentum operators (1a-b) is given by eqs. (3), (4); the latter, in general, are mean-
ingless from the physical viewpoint, since it admits solutions with a negative probability den-



11

11

sity for a moving charge. As is known, such a result evoked the necessity of giving up the ap-
plication of the Klein-Gordon equation to scalar charged particles, and to limit the area of its
applicability to scalar fields only [4].

Now, we have shown that the application of the new energy and momentum operators
(8a-b) allows modifying the solution of the Klein-Gordon equation to the form (36), which
guarantees a positive probability density of charged particle in the entire space. This result
substantiates the applicability of this equation to scalar charged particles, and makes topical
re-analysis of its other known difficulties, basically related to the fact that the Klein-Gordon
equation contains the second order time derivative of the wave function [3, 23].

Such a re-analysis lies beyond the scope of the present paper, though we hope that the re-
sults obtained above may stimulate its performance from a new perspective related to the re-
definition of the energy and momentum operators (8a-b).
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