Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/289818
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDoubrov, Boris-
dc.contributor.authorMachida, Yoshinori-
dc.contributor.authorMorimoto, Tohru-
dc.date.accessioned2022-11-24T09:21:48Z-
dc.date.available2022-11-24T09:21:48Z-
dc.date.issued2021-
dc.identifier.citationSymmetry Integr Geom Methods Appl 2021;17.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/289818-
dc.description.abstractWe give a unified method for the general equivalence problem of extrinsic geo-metry, on the basis of our formulation of a general extrinsic geometry as that of an osculating map φ: (M, f) → L/L0 ⊂Flag(V, ϕ) from a filtered manifold (M, f) to a homogeneous space L/L0 in a flag variety Flag(V, ϕ), where L is a finite-dimensional Lie group and L0 its closed subgroup. We establish an algorithm to obtain the complete systems of invariants for the osculating maps which satisfy the reasonable regularity condition of constant symbol of type (g−, gr V, L). We show the categorical isomorphism between the extrinsic geometries in flag varieties and the (weighted) involutive systems of linear differential equations of finite type. Therefore we also obtain a complete system of invariants for a general involutive systems of linear differential equations of finite type and of constant symbol. The invariants of an osculating map (or an involutive system of linear differential equations) are proved to be controlled by the cohomology group H1+(g−, l/ḡ) which is defined algebraically from the symbol of the osculating map (resp. involutive system), and which, in many cases (in partic-ular, if the symbol is associated with a simple Lie algebra and its irreducible representation), can be computed by the algebraic harmonic theory, and the vanishing of which gives rigidity theorems in various concrete geometries. We also extend the theory to the case when L is infinite dimensional.ru
dc.description.sponsorshipThe third author is partially supported by JSPS KAKENHI Grant Number 17K05232.ru
dc.language.isoenru
dc.publisherInstitute of Mathematicsru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механикаru
dc.titleExtrinsic Geometry and Linear Differential Equationsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3842/SIGMA.2021.061-
dc.identifier.scopus85109592548-
Располагается в коллекциях:Кафедра веб-технологий и компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
sigma21-061.pdf696,08 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.