Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/289795
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chen, Chaoxiang | - |
dc.contributor.author | Ye, Shiping | - |
dc.contributor.author | Bai, Zhican | - |
dc.contributor.author | Wang, Juan | - |
dc.contributor.author | Nedzved, Alexander | - |
dc.contributor.author | Ablameyko, Sergey | - |
dc.date.accessioned | 2022-11-24T06:52:54Z | - |
dc.date.available | 2022-11-24T06:52:54Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | ISPRS Int J Geo-Inf 2022;11(4). | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/289795 | - |
dc.description.abstract | With the acceleration of urbanization, climate problems affecting human health and safe operation of cities have intensified, such as heat island effect, haze, and acid rain. Using high-resolution remote sensing mapping image data to design scientific and efficient algorithms to excavate and plan urban ventilation corridors and improve urban ventilation environment is an effective way to solve these problems. In this paper, we use unmanned aerial vehicle (UAV) tilt photography technology to obtain high-precision remote sensing image digital elevation model (DEM) and digital surface model (DSM) data, count the city’s dominant wind direction in each season using long-term meteorological data, and use building height to calculate the dominant wind direction. The projection algorithm calculates the windward area density of this dominant direction. Under the guidance of K-means, the binarized windward area density map is used to determine each area and boundary of potential ventilation corridors within the threshold range, and the length and angle of each area’s fitted elliptical long axis are calculated to extract the ventilation corridors that meet the criteria. On the basis of high-precision stereo remote sensing data from UAV, the paper uses image classification, segmentation, fitting, and fusion algorithms to intelligently mine potential urban ventilation corridors, and the effectiveness of the proposed method is demonstrated through a case study in Zhuji City, Zhejiang Province. | ru |
dc.description.sponsorship | Ministry of Science and Technology of the People’s Republic of China (grant number G2021016001L, G2021016002L, G2021016028L) and Zhejiang Province Basic Public Welfare Research Program (grant number LGJ19F020002). | ru |
dc.language.iso | en | ru |
dc.publisher | MDPI | ru |
dc.rights | info:eu-repo/semantics/openAccess | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.title | Intelligent Mining of Urban Ventilated Corridor Based on Digital Surface Model under the Guidance of K-Means | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.3390/ijgi11040216 | - |
dc.identifier.scopus | 85129128169 | - |
Располагается в коллекциях: | Статьи факультета прикладной математики и информатики |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
ijgi-11-00216.pdf | 6,98 MB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.