Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/289081
Title: | Subnormality and residuals for saturated formations: A generalization of Schenkman's theorem |
Authors: | Aivazidis, Stefanos Safonova, Inna N. Skiba, Alexander N. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2021 |
Publisher: | De Gruyter Open Ltd |
Citation: | J Group Theory 2021;24(4):807-818. |
Abstract: | Let G be a finite group, and let F be a hereditary saturated formation. We denote by ZF(G} the product of all normal subgroups N of G such that every chief factor H/K{H/K} of G below N is F-central in G, that is, (H/K) G/CG(H/K) ϵ F. A subgroup A≤G is said to be F-subnormal in the sense of Kegel, or K-F-subnormal in G, if there is a subgroup chain A=A0≤A1≤ ⋯ ≤An=G such that either Ai-1 Ai or Ai/(Ai-1)Ai ϵ F} for all i=1,⋯,n. In this paper, we prove the following generalization of Schenkman's theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let F be a hereditary saturated formation containing all nilpotent groups, and let S be a K-F-subnormal subgroup of G. If ZFE=1ZF(E)=1 for every subgroup E of G such that S≤E, then CG(D)≤D, where D=SF is the F-residual of S. |
URI: | https://elib.bsu.by/handle/123456789/289081 |
DOI: | 10.1515/jgth-2020-0149 |
Scopus: | 85098867991 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Статьи факультета прикладной математики и информатики |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2009.08145.pdf | 356,45 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.