Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288522
Title: Small object detection algorithm based on YOLOv5 and attention model
Authors: Yuandong Yao
Ablameyko, Sergey
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2022
Publisher: Минск : БГУ
Citation: Информационные системы и технологии = Information Systems and Technologies : материалы междунар. науч. конгресса по информатике. В 3 ч. Ч. 2, Респ. Беларусь, Минск, 27–28 окт. 2022 г. / Белорус. гос. ун-т ; редкол.: С. В. Абламейко (гл. ред.) [и др.]. – Минск : БГУ, 2022. – С. 86-93.
Abstract: In order to solve the problems of small object and dense object in complex environment in object detection, such as low amount of object feature information, difficult positioning, false detection and missed detection, this paper proposes a YOLOv5 detection method with optimizes clustering and introduces CBAM attention mechanism. It improves the object feature extraction ability of the algorithm backbone network and captures small object features more accurately. The self-built helmet dataset is used for training and comparison experiments. The experimental results show that the algorithm has improved accuracy and speed, and has strong real-time performance
URI: https://elib.bsu.by/handle/123456789/288522
ISBN: 978-985-881-425-0 (ч. 2); ISBN 978-985-881-427-4
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2022. Информационные системы и технологии

Files in This Item:
File Description SizeFormat 
86-93.pdf507,94 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.