Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288520
Title: Multi-object tracking by using strong SORT tracker and YOLOv7 network
Authors: Hongxu Quan
Ablameyko, Sergey
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2022
Publisher: Минск : БГУ
Citation: Информационные системы и технологии = Information Systems and Technologies : материалы междунар. науч. конгресса по информатике. В 3 ч. Ч. 2, Респ. Беларусь, Минск, 27–28 окт. 2022 г. / Белорус. гос. ун-т ; редкол.: С. В. Абламейко (гл. ред.) [и др.]. – Минск : БГУ, 2022. – С. 76-79.
Abstract: Multi-object tracking is a very popular research area in computer vision, and detection-based tracking is one of the commonly used methods. In this paper, we analyze tracking of pedestrians by using the current well-performing Strong SORT tracker with different YOLO detectors and compare them. The results show that Strong SORT with YOLOv7, has better IDF1, MOTA and MTR compared to using other YOLO detectors under the MOT20 evaluation benchmark
URI: https://elib.bsu.by/handle/123456789/288520
ISBN: 978-985-881-425-0 (ч. 2); ISBN 978-985-881-427-4
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:2022. Информационные системы и технологии

Files in This Item:
File Description SizeFormat 
76-79.pdf216,57 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.