Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/288459
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSheng, Ying-
dc.contributor.authorHuang, Chiung-Yu-
dc.contributor.authorLobach, S.-
dc.contributor.authorZablotska, L.-
dc.contributor.authorLobach, I.-
dc.date.accessioned2022-11-09T07:56:04Z-
dc.date.available2022-11-09T07:56:04Z-
dc.date.issued2020-
dc.identifier.citationGenet Epidemiol 2020;44(3):261-271.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/288459-
dc.description.abstractLarge-scale genome-wide analyses scans on massive numbers of various cases and controls are archived in the genetic databases that are publically available, for example, the Database of Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap/). These databases offer unprecscendented opportunity to study the genetic effects. Yet, the set of nongenetic variables in these databases is often brief. From the statistical literature, we know that omitting a continuous variable from a logistic regression model can result in biased estimates of odds ratios (OR), even when the omitted and the included variables are independent. We are interested in assessing what information is needed to recover the bias in the OR estimate of genotype due to omitting a continuous variable in settings when the actual values of the omitted variable are not available. We derive two estimating procedures that can recover the degree of bias based on a conditional density of the omitted variable given the disease status and the genotype or the known distribution of the omitted variable and frequency of the disease in the population. Importantly, our derivations show that omitting a continuous variable can result in either under- or over-estimation of the genetic effects. We performed extensive simulation studies to examine bias, variability, false-positive rate, and power in the model that omits a continuous variable. We show the application to two genome-wide studies of Alzheimer's disease.ru
dc.description.sponsorshipDr. Lobach is supported by 5R21AG043710-02ru
dc.language.isoenru
dc.publisherWiley-Liss Inc.ru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleGenetic effect estimates in case-control studies when a continuous variable is omitted from the modelru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1002/gepi.22278-
dc.identifier.scopus85078751692-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
756015.full.pdf179,39 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.