Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/288338
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVishnevsky, V.-
dc.contributor.authorKlimenok, V.-
dc.contributor.authorSokolov, A.-
dc.contributor.authorLarionov, A.-
dc.date.accessioned2022-11-04T13:08:11Z-
dc.date.available2022-11-04T13:08:11Z-
dc.date.issued2016-
dc.identifier.citationMathematics 2021;9(24)ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/288338-
dc.description.abstractIn this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process (MMAP), phase-type service times (PH), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples.ru
dc.description.sponsorshipFunding: The reported study was funded by RFBR, project number 19-29-06043ru
dc.language.isoenru
dc.publisherMDPIru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техникаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titlePerformance evaluation of the priority multi-server system mmap/ph/m/n using machine learning methodsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3390/math9243236-
dc.identifier.scopus85121323614-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
mathematics-09-03236-v2.pdf1,27 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.