Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288280
Title: Study of changes in optical and heat-conducting properties of aln ceramics under irradiation with kr15+ and xe22+ heavy ions
Authors: Kozlovskiy, Artem L.
Zdorovets, Maxim V.
Uglov, Vladimir V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Issue Date: 2020
Publisher: MDPI AG
Citation: Nanomaterials 2020;10(12):1-15.
Abstract: AlN-based ceramics have great prospects for use in the field of structural materials for reactors of the new generation of GenIV, as well as dosimetric and optical devices. Interest in them is due to their unique physical and chemical properties, high resistance to degradation and excellent insulating properties. This work is devoted to the study of changes in the optical and heat-conducting properties of AlN ceramics as a result of irradiation with Kr15+ and Xe22+ heavy ions with energies close to those of fission fragments of uranium nuclei, and fluences 1014–1015 ion/cm2. During the study, dose relationships of changes in the optical properties of ceramics were established, as well as the effect of the type of ions on the degree of radiation damage and deterioration of optical characteristics. It has been found that an increase in the irradiation dose for Kr15+ ions leads to a slight increase in the depth of electron traps, while for samples irradiated with Xe22+ ions there is a sharp increase in the depth of occurrence from 5 to 20%, depending on the irradiation dose. For samples irradiated with Xe22+ ions, the greatest decrease in thermal conductivity was 19%, while for ceramics irradiated with Kr15+ ions, the maximum decrease was not more than 10%. The results show a significant resistance of ceramics to radiation damage by Kr15+ ions and negative effects, leading to a decrease in the resistance of optical and conductive properties of ceramics when irradiated with Xe22+ ions with doses higher than 5 × 1014 ion/cm2. Using the X-ray diffraction method, the dependences of structural distortions and changes in dislocation density in the structure of ceramics on the radiation dose were established. It has been determined that the main structural changes are associated with the fragmentation of grains, which result in an increase in the dislocation density, as well as deformation and distortion of the crystal lattice as a result of the formation of complex defects in the structure.
URI: https://elib.bsu.by/handle/123456789/288280
DOI: 10.3390/nano10122375
Scopus: 85096780165
Sponsorship: Ministry of Education and Science of the Republic of Kazakhstan (AP08051975); Ministry of Education and Science
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Кафедра физики твердого тела и нанотехнологий (статьи)

Files in This Item:
File Description SizeFormat 
nanomaterials_10_02375_pdf.pdf2,93 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.