Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/288114
Title: | Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques |
Authors: | Drugakov, V. Mossolov, V. Suarez Gonzalez, J. CMS collaboration |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Ядерная техника ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техника |
Issue Date: | 2020 |
Publisher: | Institute of Physics Publishing |
Citation: | J Instrum 2020;15(6) |
Abstract: | Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficienc |
URI: | https://elib.bsu.by/handle/123456789/288114 |
DOI: | 10.1088/1748-0221/15/06/P06005 |
Scopus: | 85088524436 |
Sponsorship: | Horizon 2020 Framework Programme (H2020). 675440, 752730, 765710 |
Licence: | info:eu-repo/semantics/openAccess |
Appears in Collections: | Статьи НИУ «Институт ядерных проблем» |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
343133489.pdf | 5,48 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.