Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/288114
Title: Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
Authors: Drugakov, V.
Mossolov, V.
Suarez Gonzalez, J.
CMS collaboration
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Ядерная техника
ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техника
Issue Date: 2020
Publisher: Institute of Physics Publishing
Citation: J Instrum 2020;15(6)
Abstract: Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at s = 13TeV, corresponding to an integrated luminosity of 35.9 fb-1. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficienc
URI: https://elib.bsu.by/handle/123456789/288114
DOI: 10.1088/1748-0221/15/06/P06005
Scopus: 85088524436
Sponsorship: Horizon 2020 Framework Programme (H2020). 675440, 752730, 765710
Licence: info:eu-repo/semantics/openAccess
Appears in Collections:Статьи НИУ «Институт ядерных проблем»

Files in This Item:
File Description SizeFormat 
343133489.pdf5,48 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.