Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/287979
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBarayeu, V.-
dc.contributor.authorHorlava, N.-
dc.contributor.authorLibert, A.-
dc.contributor.authorvan Hulle, M.-
dc.date.accessioned2022-10-25T13:33:18Z-
dc.date.available2022-10-25T13:33:18Z-
dc.date.issued2020-
dc.identifier.citationBiosensors 2020;10(9)ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/287979-
dc.description.abstractThe risk of personal data exposure through unauthorized access has never been as imminent as today. To counter this, biometric authentication has been proposed: the use of distinctive physiological and behavioral characteristics as a form of identification and access control. One of the recent developments is electroencephalography (EEG)-based authentication. It builds on the subject-specific nature of brain responses which are difficult to recreate artificially. We propose an authentication system based on EEG signals recorded in response to a simple motor paradigm. Authentication is achieved with a novel two-stage decoder. In the first stage, EEG signal features are extracted using an inception- and a VGG-like deep learning neural network (NN) both of which we compare with principal component analysis (PCA). In the second stage, a support vector machine (SVM) is used for binary classification to authenticate the subject based on the extracted features. All decoders are trained on EEG motor-movement data recorded from 105 subjects. We achieved with the VGG-like NN-SVM decoder a false-acceptance rate (FAR) of 2.55% with an overall accuracy of 88.29%, a FAR of 3.33% with an accuracy of 87.47%, and a FAR of 2.89% with an accuracy of 90.68% for 8, 16, and 64 channels, respectively. With the Inception-like NN-SVM decoder we achieved a false-acceptance rate (FAR) of 4.08% with an overall accuracy of 87.29%, a FAR of 3.53% with an accuracy of 85.31%, and a FAR of 1.27% with an accuracy of 93.40% for 8, 16, and 64 channels, respectively. The PCA-SVM decoder achieved accuracies of 92.09%, 92.36%, and 95.64% with FARs of 2.19%, 2.17%, and 1.26% for 8, 16, and 64 channels, respectively.ru
dc.description.sponsorshipBelgian Fund for Scientific Research—Flanders G088314N, G0A0914N, G0A4118Nru
dc.language.isoenru
dc.publisherMDPI CODENru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Автоматика. Вычислительная техникаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleRobust Single-Trial EEG-Based Authentication Achieved with a 2-Stage Classifierru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3390/bios10090124-
dc.identifier.scopus85090832573-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
biosensors-10-00124.pdf2,35 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.