Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/267529
Заглавие документа: Ability of Granger Causality Analysis to Detect Indirect Links: A Simulation Study
Авторы: Falasca, N. W.
Franciotti, R.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Дата публикации: 2020
Издатель: Minsk : Education and Upbringing
Библиографическое описание источника: Nonlinear Phenomena in Complex Systems. - 2020. - Vol. 23, N 2. - P. 121-124
Аннотация: Granger causality (G-causality) has emerged as a useful tool to investigate the influence that one system can exert over another system, but challenges remain when applying it to biological data. Specifically, it is not clear if G-causality can distinguish between direct and indirect influences. In this study time domain G-causality connectivity analysis was performed on simulated electroencephalographic cerebral signals. Conditional multivariate autoregressive model was applied to 19 virtual time series (nodes) to identify the effects of direct and indirect links while varying one of the following variables: the length of the time series, the lags between interacting nodes, the connection strength of the links, and the noise. Simulated data revealed that weak indirect influences are not identified by G-causality analysis when applied on covariance stationary, non-correlated electrophysiological time series.
URI документа: https://elib.bsu.by/handle/123456789/267529
ISSN: 1561-4085
DOI документа: 10.33581/1561-4085-2020-23-2-121-124
Лицензия: info:eu-repo/semantics/restrictedAccess
Располагается в коллекциях:2020. Volume 23. Number 2

Полный текст документа:
Файл Описание РазмерФормат 
v23no2p121.pdf657,86 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.