Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/265479
Title: [On the structure of invariant Banach limits] [Sur la structure des limites de Banach invariantes
Authors: Alekhno, E.
Semenov, E.
Sukochev, F.
Usachev, A.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2016
Publisher: Elsevier Masson SAS
Citation: C R Math 2016;354(12):1195-1199.
Abstract: A functional B on the space of bounded real sequences ℓ∞ is said to be a Banach limit if B⩾0, B(1,1,…)=1 and B(Tx)=B(x) for every x=(x1,x2,…)∈ℓ∞, where T is a translation operator. The set of all Banach limits B is a closed convex set on the unit sphere of ℓ∞⁎. Let C be Cesàro operator, n=1,2,… Denote B(C)={B∈B:B=BC}. The cardinality of the set of extreme points extB(C) is 2c, where c is the cardinality of continuum. A subspace generated by any countable collection from extB(C) is isometric to ℓ1. For given B∈B, r∈(0,2], we denoteSB,r={D∈B:‖D−B‖ℓ=r}. We prove that B∈extB if and only if the sphere SB,r is convex for every r∈(0,2).
URI: https://elib.bsu.by/handle/123456789/265479
DOI: 10.1016/j.crma.2016.10.007
Scopus: 84996503581
Sponsorship: The work of the second and fourth authors was supported by RNF Grant No. 16-11-101-25 . The work of the third author was partially supported by the Australian Research Council , Grant No. DP140100906
Appears in Collections:Кафедра функционального анализа и аналитической экономики (статьи)

Files in This Item:
File Description SizeFormat 
1-s2.0-S1631073X16301984-main.pdf242,79 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.