Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/264219
Title: First integrals of the May-Leonard asymmetric system
Authors: Antonov, V.
Fernandes, W.
Romanovski, V.G.
Shcheglova, N.L.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2019
Publisher: MDPI AG
Citation: Mathematics 2019;7(3).
Abstract: For the May-Leonard asymmetric system, which is a quadratic system of the Lotka-Volterra type depending on six parameters, we first look for subfamilies admitting invariant algebraic surfaces of degree two. Then for some such subfamilies we construct first integrals of the Darboux type, identifying the systems with one first integral or with two independent first integrals.
URI: https://elib.bsu.by/handle/123456789/264219
DOI: 10.3390/math7030292
Scopus: 85063909040
Sponsorship: Valery Romanovski is supported by the Slovenian Research Agency (program P1-0306, project N1-0063). The second, third and forth authors acknowledge also the support by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, FP7-PEOPLE-2012-IRSES-316338.
Appears in Collections:Кафедра дифференциальных уравнений и системного анализа (статьи)

Files in This Item:
File Description SizeFormat 
mathematics-07-00292.pdf267,1 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.