Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/264219
Title: | First integrals of the May-Leonard asymmetric system |
Authors: | Antonov, V. Fernandes, W. Romanovski, V.G. Shcheglova, N.L. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Issue Date: | 2019 |
Publisher: | MDPI AG |
Citation: | Mathematics 2019;7(3). |
Abstract: | For the May-Leonard asymmetric system, which is a quadratic system of the Lotka-Volterra type depending on six parameters, we first look for subfamilies admitting invariant algebraic surfaces of degree two. Then for some such subfamilies we construct first integrals of the Darboux type, identifying the systems with one first integral or with two independent first integrals. |
URI: | https://elib.bsu.by/handle/123456789/264219 |
DOI: | 10.3390/math7030292 |
Scopus: | 85063909040 |
Sponsorship: | Valery Romanovski is supported by the Slovenian Research Agency (program P1-0306, project N1-0063). The second, third and forth authors acknowledge also the support by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, FP7-PEOPLE-2012-IRSES-316338. |
Appears in Collections: | Кафедра дифференциальных уравнений и системного анализа (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mathematics-07-00292.pdf | 267,1 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.