Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/264207
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorChen, H.-
dc.contributor.authorYe, S.-
dc.contributor.authorNedzvedz, A.-
dc.contributor.authorNedzvedz, O.-
dc.contributor.authorLv, H.-
dc.contributor.authorAblameyko, S.-
dc.date.accessioned2021-07-12T08:01:11Z-
dc.date.available2021-07-12T08:01:11Z-
dc.date.issued2019-
dc.identifier.citationComput Opt 2019;43(4):647-652.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/264207-
dc.description.abstractRoad traffic analysis is an important task in many applications and it can be used in video surveillance systems to prevent many undesirable events. In this paper, we propose a new method based on integral optical flow to analyze cars movement in video and detect flow extreme situations in real-world videos. Firstly, integral optical flow is calculated for video sequences based on optical flow, thus random background motion is eliminated; secondly, pixel-level motion maps which describe cars movement from different perspectives are created based on integral optical flow; thirdly, region-level indicators are defined and calculated; finally, threshold segmentation is used to identify different cars movements. We also define and calculate several parameters of moving car flow including direction, speed, density, and intensity without detecting and counting cars. Experimental results show that our method can identify cars directional movement, cars divergence and cars accumulation effectively.ru
dc.description.sponsorshipPublic Welfare Technology Applied Research Program of Zhejiang Province (LGF19F020016, LGJ18F020001 and LGJ19F020002), Zhejiang Provincial Natural Science Foundation of China (LZ15F020001), and the National High-end Foreign Experts Program (GDW20183300463).ru
dc.language.isoenru
dc.publisherInstitution of Russian Academy of Sciencesru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механикаru
dc.titleTraffic extreme situations detection in video sequences based on integral optical flowru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.18287/2412-6179-2019-43-4-647-652-
dc.identifier.scopus85073442825-
Располагается в коллекциях:Кафедра веб-технологий и компьютерного моделирования (статьи)

Полный текст документа:
Файл Описание РазмерФормат 
430417.pdf1,05 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.