Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/262895
Заглавие документа: | Performance of top-quark and W -boson tagging with ATLAS in Run 2 of the LHC |
Авторы: | Hrynevich, A. ATLAS Collaboration |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2019 |
Издатель: | Springer New York LLC |
Аннотация: | The performance of identification algorithms (“taggers”) for hadronically decaying top quarks and W bosons in pp collisions at s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1 fb - 1 for the tt¯ and γ+ jet and 36.7 fb - 1 for the dijet event topologies. |
URI документа: | https://elib.bsu.by/handle/123456789/262895 |
DOI документа: | 10.1140/epjc/s10052-019-6847-8 |
Scopus идентификатор документа: | 85065123030 |
Финансовая поддержка: | CERN for the benefit of the ATLAS collaboration. |
Располагается в коллекциях: | Статьи НИУ «Институт ядерных проблем» |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Aaboud2019_Article_PerformanceOfTop-quarkAndVarve.pdf | 4 MB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.