Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/262717
Title: | Irradiation studies of a multi-doped Gd3Al2Ga3O12 scintillator |
Authors: | Alenkov, V. Buzanov, O. Dosovitskiy, G. Egorychev, V. Fedorov, A. Golutvin, A. Guz, Y. Jacobsson, R. Korjik, M. Kozlov, D. Mechinsky, V. Schopper, A. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Issue Date: | 2019 |
Publisher: | Elsevier B.V. |
Citation: | Nucl Instrum Methods Phys Res Sect A 2019;916:226-229. |
Abstract: | The characteristics of a Gd3Al2Ga3O12 crystal scintillator doped with cerium and co-doped with magnesium and titanium have been studied, mainly in view of using it for the Phase II upgrade of the LHCb electromagnetic calorimeter. Samples of the scintillator were irradiated with γ (60Co) to 2 kGy and with 24 GeV protons to 900 kGy. The proton fluence value was ∼3⋅1015cm−2. It was found that γ-irradiation did not produce any change in the optical transmission of the crystals in the spectral range of the scintillation light, whereas a degradation after the proton irradiation was measurable. For the 1 cm thick sample, a loss of transmission of 3.6% was measured at the wavelength of maximum scintillation (520 nm), and the measured induced absorption coefficient at this wavelength was ∼3.6 m−1. The formation of radioisotopes in the crystal at proton irradiation has been analysed. The formation of isotopes was also simulated with the help of the FLUKA package. The simulation was found to be in a good agreement with experimental results. The results have been used to estimate the expected intensity of parasitic radio-luminescence at high-luminosity operation in a GAGG/W sampling electromagnetic calorimeter. |
URI: | https://elib.bsu.by/handle/123456789/262717 |
DOI: | 10.1016/j.nima.2018.11.101 |
Scopus: | 85057583147 |
Sponsorship: | European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654168 and was supported by grant No. 14.W03.31.0004 of the Russian Federation Government . |
Appears in Collections: | Статьи НИУ «Институт ядерных проблем» |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
untitled.pdf | 997,49 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.