Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/259641
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDoubrov, B.-
dc.contributor.authorFerapontov, E. V.-
dc.contributor.authorKruglikov, B.-
dc.contributor.authorNovikov, V. S.-
dc.date.accessioned2021-05-15T11:40:34Z-
dc.date.available2021-05-15T11:40:34Z-
dc.date.issued2018-
dc.identifier.citationProc Lond Math Soc 2018;116(5):1269-1300.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/259641-
dc.description.abstractLet Gr(d, n) be the Grassmannian of d-dimensional linear subspaces of an n-dimensional vector space Vn. A submanifold X ⊂ Gr(d, n) gives rise to a differential system Σ(X) that governs d-dimensional submanifolds of Vn whose Gaussian image is contained in X. Systems of the form Σ(X) appear in numerous applications in continuum mechanics, theory of integrable systems, general relativity and differential geometry. They include such well-known examples as the dispersionless Kadomtsev–Petviashvili equation, the Boyer–Finley equation, Plebańsky's heavenly equations and so on. In this paper we concentrate on the particularly interesting case of this construction where X is a fourfold in Gr(3, 5). Our main goal is to investigate differential-geometric and integrability aspects of the corresponding systems Σ(X). We demonstrate the equivalence of several approaches to dispersionless integrability such as the method of hydrodynamic reductions; the method of dispersionless Lax pairs; integrability on solutions, based on the requirement that the characteristic variety of system Σ(X) defines an Einstein–Weyl geometry on every solution; integrability on equation, meaning integrability (in twistor-theoretic sense) of the canonical GL(2,R) structure induced on a fourfold X ⊂ Gr(3, 5). All these seemingly different approaches lead to one and the same class of integrable systems Σ(X). We prove that the moduli space of such systems is six-dimensional. We give a complete description of linearisable systems (the corresponding fourfold X is a linear section of Gr(3, 5)) and linearly degenerate systems (the corresponding fourfold X is the image of a quadratic map P4 → Gr(3, 5)). The fourfolds corresponding to ‘generic’ integrable systems are not algebraic, and can be parametrised by generalised hypergeometric functions.ru
dc.description.sponsorshipReceived 9 December 2016; revised 13 November 2017; published online 31 January 2018. 2010 Mathematics Subject Classification 37K10, 37K25, 53A30, 53A40, 53B15, 53B25, 53B50 (primary), 53Z05 (secondary). The research of E. Ferapontov was partially supported by the EPSRC grant EP/N031369/1.ru
dc.language.isoenru
dc.publisherJohn Wiley and Sons Ltdru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleOn integrability in Grassmann geometries: integrable systems associated with fourfolds in Gr(3,5)ru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1112/plms.12114-
dc.identifier.scopus85041210698-
Располагается в коллекциях:Статьи факультета прикладной математики и информатики

Полный текст документа:
Файл Описание РазмерФормат 
3D_DFKN_PLMS.pdf470,86 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.