Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/259248
Title: Decidability of the theory of modules over prüfer domains with infinite residue fields
Authors: Gregory, L.
L'Innocente, S.
Puninski, G.
Toffalori, C.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2018
Publisher: Cambridge University Press
Citation: J Symb Logic 2018;83(4):1391-1412.
Abstract: We provide algebraic conditions ensuring the decidability of the theory of modules over effectively given Prüfer (in particular Bézout) domains with infinite residue fields in terms of a suitable generalization of the prime radical relation. For Bézout domains these conditions are also necessary
URI: https://elib.bsu.by/handle/123456789/259248
DOI: 10.1017/jsl.2018.58
Scopus: 85061916989
Appears in Collections:Кафедра высшей алгебры и защиты информации (статьи)

Files in This Item:
File Description SizeFormat 
1706.08940.pdf252,86 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.