Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/259244
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKholmetskii, A.L.-
dc.contributor.authorYarman, T.-
dc.contributor.authorMissevitch, O.V.-
dc.contributor.authorArik, M.-
dc.date.accessioned2021-04-30T09:00:06Z-
dc.date.available2021-04-30T09:00:06Z-
dc.date.issued2018-
dc.identifier.citationSci Rep 2018;8(1).ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/259244-
dc.description.abstractWe analyze the quantum phase effects for point-like charges and electric (magnetic) dipoles under a natural assumption that the observed phase for a dipole represents the sum of corresponding phases for charges composing this dipole. This way we disclose two novel quantum phases for charged particles, which we named as complementary electric Aharonov-Bohm (A-B) phase and complementary magnetic A-B phase, respectively. We reveal that these phases are derived from the Schrödinger equation only in the case, where the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system of charged particles. The related alteration should be introduced to Klein-Gordon and Dirac equations, too, and implications of this modification are discussed.ru
dc.language.isoenru
dc.publisherNature Publishing Groupru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleQuantum phases for moving charges and dipoles in an electromagnetic field and fundamental equations of quantum mechanicsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1038/s41598-018-30423-8-
dc.identifier.scopus85051551902-
Appears in Collections:Статьи НИУ «Институт ядерных проблем»

Files in This Item:
File Description SizeFormat 
s41598-018-30423-8.pdf1,39 MBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.