Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/259237
Title: | Electrical permittivity and conductivity of a graphene nanoplatelet contact in the microwave range |
Authors: | Bellucci, S. Maffucci, A. Maksimenko, S. Micciulla, F. Migliore, M.D. Paddubskaya, A. Pinchera, D. Schettino, F. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Issue Date: | 2018 |
Publisher: | MDPI AG |
Citation: | Mater 2018;10(12). |
Abstract: | This paper investigates the electrical properties in the microwave range of a contact made by graphene nanoplatelets. The final goal is that of estimating the range of values for the equivalent electrical complex permittivity of a contact obtained by integrating low-cost graphene in the form of nanoplatelets (GNPs) into a high-frequency electrical circuit. To this end, a microstrip-like circuit is designed and realized, where the graphene nanoplatelets are self-assembled into a gap between two copper electrodes. An experimental characterization is carried out, both to study the structural properties of the nanomaterials and of the realized devices, and to measure the electromagnetic scattering parameters in the microwave range by means of a microstrip technique. A full-wave electromagnetic model is also derived and used to investigate the relationship between the measured quantities and the physical and geometrical parameters. The combined use of the experimental and simulation results allows for retrieving the values of the equivalent complex permittivity. The equivalent electrical conductivity values are found to be well below the values expected for isolated graphene nanoplatelets. The real part of the electrical relative permittivity attains values comparable to those obtained with GNP nanocomposites. © 2018 by the authors. |
URI: | https://elib.bsu.by/handle/123456789/259237 |
DOI: | 10.3390/ma11122519 |
Scopus: | 85058227480 |
Sponsorship: | Funding: This research was partly funded by Italian Ministry of University, MIUR program “Dipartimenti di Eccellenza 2018-2022” |
Appears in Collections: | Статьи НИУ «Институт ядерных проблем» |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
materials-11-02519.pdf | 3,51 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.