Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/259080
Заглавие документа: | On the peripheral spectrum of positive elements |
Авторы: | Alekhno, E. A. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика |
Дата публикации: | 2018 |
Издатель: | Birkhauser Verlag AG |
Библиографическое описание источника: | Positivity 2018;22(4):931-968. |
Аннотация: | Let A be an ordered Banach algebra with a unit e and a cone A+. An element p of A is said to be an order idempotent if p2= p and 0 ≤ p≤ e. An element a∈ A+ is said to be irreducible if the relation (e- p) ap= 0 , where p is an order idempotent, implies p= 0 or p= e. For an arbitrary element a of A the peripheral spectrum σper(a) of a is the set σper(a) = { λ∈ σ(a) : | λ| = r(a) } , where σ(a) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which σper(a) contains or coincides with r(a) Hm, where Hm is the group of all mth roots of unity, and the spectrum σ(a) is invariant under rotation by the angle 2πm for some m∈ N, are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., σper(a) = { r(a) } , are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities 0 ≤ b< a imply r(b) < r(a) are studied. The closedness of the center Ae, i.e., of the order ideal generated by e in A, is proved. |
URI документа: | https://elib.bsu.by/handle/123456789/259080 |
DOI документа: | 10.1007/s11117-018-0562-9 |
Scopus идентификатор документа: | 85043359463 |
Располагается в коллекциях: | Архив статей механико-математического факультета до 2016 г. |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1705.06602.pdf | 393,51 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.