Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/258247
Title: | Estimation of natural frequencies of pure bending vibrations of composite nonlinearly elastic beams and circular plates |
Other Titles: | Оценка собственных частот колебаний чистого изгиба композиционных нелинейно-упругих балок и круглых пластин |
Authors: | Tarasyuk, I. A. Kravchuk, A. S. |
Keywords: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Механика |
Issue Date: | 2017 |
Publisher: | Institute of Computer Science |
Citation: | Comput Res Model 2017;9(6):945-953. |
Abstract: | In the paper, it is represented a linearization method for the stress-strain curves of nonlinearly deformable beams and circular plates in order to generalize the pure bending vibration equations. It is considered composite, on average isotropic prismatic beams of a constant rectangular cross-section and circular plates of a constant thickness made of nonlinearly elastic materials. The technique consists in determining the approximate Young's moduli from the initial stress-strain state of beam and plate subjected to the action of the bending moment. The paper proposes two criteria for linearization: the equality of the specific potential energy of deformation and the minimization of the standard deviation in the state equation approximation. The method allows obtaining in the closed form the estimated value of the natural frequencies of layered and structurally heterogeneous, on average isotropic nonlinearly elastic beams and circular plates. This makes it possible to significantly reduce the resources in the vibration analysis and modeling of these structural elements. In addition, the paper shows that the proposed linearization criteria allow to estimate the natural frequencies with the same accuracy. Since in the general case even isotropic materials exhibit different resistance to tension and compression, it is considered the piecewise-linear Prandtl's diagrams with proportionality limits and tangential Young's moduli that differ under tension and compression as the stress-strain curves of the composite material components. As parameters of the stress-strain curve, it is considered the effective Voigt's characteristics (under the hypothesis of strain homogeneity) for a longitudinally layered material structure; the effective Reuss' characteristics (under the hypothesis of strain homogeneity) for a transversely layered beam and an axially laminated plate. In addition, the effective Young's moduli and the proportionality limits, obtained by the author's homogenization method, are given for a structurally heterogeneous, on average isotropic material. As an example, it is calculated the natural frequencies of two-phase beams depending on the component concentrations. |
Abstract (in another language): | В работе представлена методика линеаризации диаграммы растяжения-сжатия материала нелинейно деформируемых балки и круглой пластины с целью обобщения уравнений свободных колебаний чистого изгиба. В статье рассматриваются композиционные, в среднем изотропные призматические балки постоянного прямоугольного поперечного сечения и круглые пластины постоянной толщины из нелинейно-упругих компонент. Методика заключается в определении аппроксимирующего модуля Юнга материала исходя из начального напряженно-деформированного состояния балки и пластины, подверженных действию изгибающего момента. В статье предлагается два критерия линеаризации: равенство удельной потенциальной энергии деформации, а также минимизация среднеквадратического отклонения при приближении нелинейного уравнения состояния линейной функцией. Данный метод позволяет в аналитическом виде получить оценочное значение частоты свободных колебаний слоистых и структурно-неоднородных в среднем изотропных нелинейно-упругих балок и пластин, что предоставляет возможность существенно сократить ресурсы при вибрационном анализе и моделировании указанных элементов конструкций. Кроме того, в работе показано, что предложенные критерии линеаризации позволяют производить оценку величины собственных частот с одинаковой точностью. Поскольку в общем случае даже изотропные материалы проявляют разную сопротивляемость растяжению и сжатию, в качестве кривых деформирования компонент композиционного материала в работе впервые рассматриваются кусочно-линейные диаграммы Прандтля с различающимися пределами пропорциональности и касательными модулями Юнга при растяжении и сжатии. В качестве параметров диаграммы деформирования слоистых материалов рассматриваются эффективные характеристики по Фойгту при гипотезе об однородности деформаций (для продольно-слоистой структуры материла), по Рейссу при гипотезе об однородности напряжений (для поперечно-слоистой балки и аксиально-слоистой пластины). Кроме того, для структурно-неоднородного в среднем изотропного материала приведены эффективные модули Юнга и пределы пропорциональности, полученные с помощью ранее предложенного авторами метода гомогенизации. В качестве примера приведен расчет собственных частот колебаний двухфазных балок в зависимости от концентраций компонент их материала. |
URI: | https://elib.bsu.by/handle/123456789/258247 |
DOI: | 10.20537/2076-7633-2017-9-6-945-953 |
Scopus: | 85044160563 |
Sponsorship: | BRFFR grant No. F17M-009. |
Appears in Collections: | Кафедра био- и наномеханики (статьи) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2017_06_07.pdf | 371,37 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.