Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/258039
Title: Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV
Authors: Mossolov, V.
Shumeiko, N.
Gonzalez, Suarez J.
CMS collaboration
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Issue Date: 2017
Publisher: Institute of Physics Publishing
Citation: J Instrum 2017;12(2).
Abstract: Improved jet energy scale corrections, based on a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS experiment in proton-proton collisions at a center-of-mass energy of 8 TeV, are presented. The corrections as a function of pseudorapidity η and transverse momentum pT are extracted from data and simulated events combining several channels and methods. They account successively for the effects of pileup, uniformity of the detector response, and residual data-simulation jet energy scale differences. Further corrections, depending on the jet flavor and distance parameter (jet size) R, are also presented. The jet energy resolution is measured in data and simulated events and is studied as a function of pileup, jet size, and jet flavor. Typical jet energy resolutions at the central rapidities are 15-20% at 30 GeV, about 10% at 100 GeV, and 5% at 1 TeV. The studies exploit events with dijet topology, as well as photon+jet, Z+jet and multijet events. Several new techniques are used to account for the various sources of jet energy scale corrections, and a full set of uncertainties, and their correlations, are provided.The final uncertainties on the jet energy scale are below 3% across the phase space considered by most analyses (pT > 30 GeV and |η| < 5:0). In the barrel region (|η| < 1:3) an uncertainty below 1% for pT > 30 GeV is reached, when excluding the jet flavor uncertainties, which are provided separately for different jet flavors. A new benchmark for jet energy scale determination at hadron colliders is achieved with 0.32% uncertainty for jets with pT of the order of 165-330 GeV, and |η| < 0:8.
Description: CERN 2017 for the benefit of the CMS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl.
URI: https://elib.bsu.by/handle/123456789/258039
DOI: 10.1088/1748-0221/12/02/P02014
Sponsorship: 2014/13/B/ST2/02543,DEC-2012/07/E/ST2/01406
Appears in Collections:Статьи НИУ «Институт ядерных проблем»

Files in This Item:
File Description SizeFormat 
Khachatryan_2017_J._Inst._12_P02014.pdf4,06 MBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.