Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/248662
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChepeleva, M.-
dc.contributor.authorKakoichankava, A.-
dc.contributor.authorYatskou, M. M.-
dc.contributor.authorNazarov, P. V.-
dc.date.accessioned2020-09-24T12:32:42Z-
dc.date.available2020-09-24T12:32:42Z-
dc.date.issued2020-
dc.identifier.citationКомпьютерные технологии и анализ данных (CTDA’2020) : материалы II Междунар. науч.-практ. конф., Минск, 23–24 апр. 2020 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : БГУ, 2020. – С. 170-173.-
dc.identifier.isbn978-985-566-942-6-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/248662-
dc.descriptionСекция «Биоинформатика»-
dc.description.abstractHere we estimated the optimal parameters of the independent component analysis method regarding the tasks of identification of glioblastoma and pancreatic cancer subtypes, prediction of patient survival and characterization of active biological processes. Analysis of deconvolution results of bulk and single-cell data allows sharing annotation between highly correlated components and improving interpretability of the results-
dc.language.isoen-
dc.publisherМинск : БГУ-
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика-
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология-
dc.titleIndependent component analysis of cancer transcriptomes: optimization of parameters and improvement of interpretability-
dc.typeconference paper-
Appears in Collections:2020. Компьютерные технологии и анализ данных (CTDA’2020)

Files in This Item:
File Description SizeFormat 
170-173.pdf852,73 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.