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Here we estimated the optimal parameters of the independent component analysis
method regarding the tasks of identification of glioblastoma and pancreatic cancer sub-
types, prediction of patient survival and characterization of active biological processes.
Analysis of deconvolution results of bulk and single-cell data allows sharing annotation
between highly correlated components and improving interpretability of the results.
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Introduction. Independent component analysis (ICA) allows decomposing
heterogeneous transcriptomic data and extracting signals that correspond ei-
ther to relevant biological processes or to technical biases [1]. Weights of in-
dependent components can be used as features for downstream analysis al-
lowing to improve quality compared to gene-based methods and to carry out
interpretation of meaningful signals. Here we investigated the effect of the
number of independent components on quality of prediction and extracted bi-
ological content. Furthermore, by simultaneous analysis of single cell RNA-
seq (scCRNA-seq) data from tumor and normal tissues, we improved our un-
derstanding of the biology of the components linked to survival and patient
classes.

Method. The parallel consensus ICA implemented in consICA [2] was ap-
plied to RNA-seq gene expression data of glioblastoma (GBM) [3] and pan-
creatic adenocarcinoma (PAAD) [4] bulk samples, as well as to two sScCRNA-
seq datasets originated from a cancer glioblastoma cell line [5] and a normal
pancreas [6] (Fig. 1A).

Weight matrix and the most significant differentially expressed genes were
used as input features to random forest classifiers. Final balanced accuracy of
multi-class classification was calculated as an average of balanced accuracies
for each class. We also carried out survival prediction with Cox regression us-
ing the weights of independent components with the following risk score for
each j-th patient:

RS; = Y H; R?M;;, 1)
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where H; is log-hazard ratios for the components significantly (FDR < 0.05)
linked to survival on training data (5-fold cross-validation was used) and 0 for
other, R? is the stability of i-th component (mean squared correlation between
runs of ICA), M; is a standardized row of the weight matrix M, (Fig. 1B), as
in [2].
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Fig.1. (A) ICA decomposes gene expression matrix into meaningful signals (metagenes, S)
and weights (weight matrix, M). Biological processes can be found by analysis of S, while
M could be linked to patient cancer groups and patient survival. Matching S-matrices of
bulk and single-cell deconvolution allows annotating bulk components with specific cells
signals. (B) Cox regression models were built for each independent component. Then
components with FDR < 0.05 were used to calculate the risk score (Eq. 1).

Then we calculated correlation between S matrices of ICA decompositions
for bulk tissues and single-cell data to identify components representing simi-
lar signals (Fig.1). Some components were linked to specific cells types ac-
cording to distribution of the weights of each component in respect to the cell
types.

Results. We validated multi-class models to predict cancer subtypes and
calculated average multi-class combined balanced accuracy for several exper-
iments (Fig. 2A). Predicted cancer subtypes were classi-
cal/mesenchymal/neural/proneural (for GMB),
adex/immunogenic/progenitor/squamous (for PAAD). Comparing to the
models trained on the 100 most significantly differentially expressed genes
(horizontal line), the top ICA-based features improved the results.
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To identify the optimal number of the independent components for the
survival analysis, we performed 5-fold cross-validations of ICA-based cox-
regression models. As it can be seen from Fig. 2B, the optimal number of
components depends on the dataset: 80 components were required for GBM,
whereas only 20 were enough for PAAD.
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Fig.2. (A) Average balanced accuracy depending on the number of independent compo-
nents for random forest cancer subtypes prediction. Horizontal line corresponds to the mod-
el trained on the most significant differentially expressed genes. (B) Average p-value of
ICA-based Cox regression models, trained on the components with FDR < 0.05, depending
on the number of independent components.

Matching deconvolution results (matrices S) obtained on bulk cancer sam-
ples and single-cell data, we found highly correlated components. In the case,
when 7 components were extracted from cancer cell lines (single-cell) and
100 from GBM data (bulk), the two most correlated components were linked
to the cell cycle and two others represented technical effects (overall gene ex-
pression). Single-cell data required 5 or more components to extract the cell
cycle. In the more complex bulk sample dataset, the cell cycle was detected
with at least 9 components.

Next, the results of ICA deconvolution of sScRNA-seq from normal pancre-
as samples were matched with the ICA results on bulk PAAD samples. Re-
quired number of components to extract signals of cell subtypes were: acinar
cells and pancreatic ductal cells — 4 components, mesenchymal cells — 9, pan-
creatic A cells — 14. Technical effects were isolated when 11 or more inde-
pendent components were used. All these signals were detected in the analysis
of bulk PAAD data with 20 components.

Conclusions. Analysis of deconvolution results of bulk and single-cell data
allows sharing annotation between highly correlated components of bulk and
single-cell experiments. This annotation can be used to improve interpretation
of predictive models. Two the most correlated components from tumor single
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cell data represented cell cycle. Finally, we estimated the optimal number of
components for extracting individual cell types in pancreas SCRNA-seq data.
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COCTAB U BAPUABEJIBHOCTB I'EHOB GST U UDT BI'EHOME
APHIS CRACCIVORA
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B pabote npesncrasiensl pe3ynbtarhl anHOTanuu reHoB GST u UDT B renome Aphis
craccivora, Takke MpPOBEJCH CPaBHUTENbHBIA aHAJIM3 T'EHHOTO COCTaBa C JPYTHMU T'€HO-
Mamu Tiaei. [Tokasano, yro redusiii cocras ceMeiicts UDT u GST B renome A. craccivora
SIBJSIETCS] THIMYHBIM JUTs TIei poaa AphIS, 0HaKo OTIHYasCh OT TAKOBOTO y TIIEH JAPYTUX
ponoB. Cpenn OCOOEHHOCTEH 3TOr0 pojia MOKHO BBIJICNTUTH YHUKaIbHbIE TeHbl 2A2 U
2B33, a Takxke oTcyTrcTBUE TeHOB 1 1.

Knioueswie crosa: 2EHOMUKA, MU, CUCIEMbl ()em0KCMKClZ/{Z/lZ/l.

Beeoenue. B peTokcukaluM KCEHOOMOTHMKOB YYacTBYIOT TpPU TPYIIIIbI
(dbepMeHTOB, KOTOpbIe MOOYepEnHO Mpeodpasyror cybdcrpar. Ilpu uzonmpo-
BaHHOM M3YYEHUU T'€HOB, MPOAYKThI KOTOPHIX YYaCTBYIOT B IETOKCUKAIIUU Ha
ee nepBoi ctaguu (CYP450 u/mim sctepassl U KapOOKCHITI-ICTEPa3bl) HEBO3-
MO>KHO TMOJIYYUTh MOJHYIO KapTUHY pabOThl CUCTEMBI IETOKCUKAIMU. B cBsi3n
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