Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/248659
Title: Автоэнкодерная нейронная сеть для генерации потенциальных ингибиторов ВИЧ-1 методами глубокого обучения
Authors: Николаев, Г. И.
Шульдов, Н. А.
Анищенко, А. И.
Тузиков, А. В.
Андрианов, А. М.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология
Issue Date: 2020
Publisher: Минск : БГУ
Citation: Компьютерные технологии и анализ данных (CTDA’2020) : материалы II Междунар. науч.-практ. конф., Минск, 23–24 апр. 2020 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : БГУ, 2020. – С. 158-162.
Abstract: Методами глубокого обучения разработан генеративный состязательный автоэнкодер для рационального дизайна потенциальных ингибиторов проникновения ВИЧ-1, способных блокировать участок белка gp120 оболочки вируса, критический для его связывания с клеточным рецептором CD4. Были выполнены исследования, включающие создание архитектуры автоэнкодера, формирование молекулярной библиотеки потенциальных лигандов белка gp120 ВИЧ-1 для обучения нейронной сети, молекулярный докинг лигандов с белком gp120 и расчет свободной энергии связывания, генерацию молекулярных дескрипторов химических соединений обучающего набора данных, обучение нейронной сети, оценку результатов обучения и работы автоэнкодера. Рассмотрены результаты тестирования автоэнкодера на широком наборе соединений из молекулярной библиотеки ZINC. Показано, что совместное использование нейронной сети с виртуальным скринингом баз данных химических соединений формирует продуктивную платформу для идентификации базовых структур, перспективных для создания новых противовирусных препаратов, ингибирующих ранние стадии развития ВИЧ-инфекции
Description: Секция «Биоинформатика»
URI: https://elib.bsu.by/handle/123456789/248659
ISBN: 978-985-566-942-6
Appears in Collections:2020. Компьютерные технологии и анализ данных (CTDA’2020)

Files in This Item:
File Description SizeFormat 
158-162.pdf536,93 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.