Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/234657
Title: Effects of recombinant human lactoferrin on calcium signaling and functional responses
Authors: Grigorieva, D. V.
Gorudko, I. V.
Shamova, E. V.
Terekhova, M. S.
Maliushkova, E. V.
Semak, I. V.
Cherenkevich, S. N.
Sokolov, A. V.
Timoshenko, A. V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика
Issue Date: 2019
Citation: Arch. Biochem. Biophys. – 2019. – Vol. 675. – P. 108-122
Abstract: Lactoferrin is a non-heme iron-binding glycoprotein with multiple health-beneficial functions including antimicrobial, antioxidant, anticarcinogenic, and immunomodulatory effects. There is emerging evidence that neutrophils may serve as targets of lactoferrin in vivo, and here we show how recombinant human lactoferrin (rhLf) can contribute to this regulation. Indeed, our results demonstrate that rhLf binds efficiently to human neutrophils and induces a variety of early cellular responses such as mobilization of intracellular Ca2+, remodeling of actin cytoskeleton, and degranulation (release of lysozyme and myeloperoxidase). In addition, rhLf facilitates lectin-induced H2O2 production and stabilization of lectin-induced cellular aggregates. The role of calcium signaling seems to be essential for rhLf-induced activation of neutrophils, as Ca2+-chelators inhibit degranulation response while lectin-induced H2O2 production correlates significantly with cytoplasmic Ca2+ elevation. Taken together, our findings justify that rhLf can activate neutrophil functions in a calcium-dependent manner and hence, can potentiate innate immune responses.
URI: http://elib.bsu.by/handle/123456789/234657
DOI: 10.1016/j.abb.2019.108122
Appears in Collections:Кафедра биофизики (статьи)

Files in This Item:
File Description SizeFormat 
2019 Effects of recombinant human lactoferrin on calcium signaling.pdf926,48 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.